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Abstract

The Mathematica toolkit AMBRE derives Mellin-Barnes (MB) representations for
Feynman integrals in d = 4 − 2ε dimensions. It may be applied for tadpoles as
well as for multileg and multiloop scalar and tensor integrals. AMBRE uses a loop-
by-loop approach and aims at lowest dimensions of the final MB representations. It
integrates the package MB for the determination of the singularity structure in ε. The
correctness of the representations has to be checked numerically. AMBRE works fine
for planar Feynman diagrams. The package contains various sample applications for
Feynman integrals with up to six external particles and up to four loops.
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1 Introduction

Recently, Mellin-Barnes (MB) representations of Feynman integrals have been used ex-
tensively in various phenomenological and theoretical studies of quantum field theory.
In many applications, sometimes in quite sophisticated ones [1–3], the MB-integrals can
be solved analytically. One also may merge knowledge of some analytical solutions given
by MB-integrals with other methods, e.g. the differential equations approach, as demon-
strated in [4]. An introduction to the subject with many examples may be found in the
monographies [5,6]. A systematic derivation and numerical evaluation of MB-representations
for Feynman integrals with a (unpublished) Maple package was described in [7]. At the
same time, the Mathematica program MB for the automatized analytic continuation of
MB-integrals was published in [8]. With AMBRE, we deliver a Mathematica tool for the
derivation of MB-integrals and their subsequent analytic continuation and numerical eval-
uation with MB.

The article is organized as follows. In section 2 we introduce the formulae used for the
MB-representation of a general Feynman integral, and in section 3 the basic features
of AMBRE are described. One-loop examples are given in section 4, section 5 describes
the implementation of the loop-by-loop approach to multi-loop integrals, and tadpoles
are discussed in section 6. Comments on limitations of AMBRE and conclusions follow in
sections 7 and 8.

2 Construction of Mellin-Barnes representations

The backbone of the procedure to build up MB-representations is the relation

1

(A + B)ν
=

B−ν

2πiΓ(ν)

i∞
∫

−i∞

dσAσ B−σ Γ(−σ)Γ(ν + σ), (1)

where the integration contour separates the poles of the Γ-functions.

The object to be evaluated by AMBRE is an L-loop Feynman integral 1 in d = 4 − 2ε
dimensions with N internal lines with momenta qi and masses mi, and E external legs
with momenta pe:

GL[T (k)] =
1

(iπd/2)L

∫

ddk1 . . . ddkL T (k)

(q2
1 − m2

1)
ν1 . . . (q2

i − m2
i )

νj . . . (q2
N − m2

N )νN
. (2)

1 Often one uses the additional normalization e
εγEL; we leave this to the later evaluation with

the package MB [8].
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The numerator T (k) is a tensor in the integration variables:

T (k)= 1, kµ
l , kµ

l kν
n, . . . (3)

The momenta of the denominator functions di may be expressed by external and loop
momenta:

di = q2
i − m2

i , (4)

qi =
L
∑

l=1

αilkl − Pi, (5)

Pi =
E
∑

e=1

βiepe. (6)

In the package AMBRE, in a first step the momentum integrals are replaced by Feynman
parameter integrals:

GL[T (k)] = (−1)Nν
Γ
(

Nν −
d
2
L
)

Γ(ν1) . . .Γ(νN)

1
∫

0

N
∏

j=1

dxj x
νj−1
j δ

(

1 −
N
∑

i=1

xi

)

U(x)Nν−d(L+1)/2

F (x)Nν−dL/2
PL[T ] (7)

with

Nν =
N
∑

i=1

νi. (8)

The two functions U and F are polynomials in x. They are characteristics of the topology
of the underlying Feynman diagram; one may derive them from

N =
N
∑

i=1

xi(q
2
i − m2

i ) ≡ kMk − 2kQ + J, (9)

where Mll′ =
∑N

i=1 αil′xiαil, and Ql =
∑N

i=1 αilPixi, and J =
∑N

i=1(P
2
i − m2

i )xi. Namely:

U(x) =det(M), (10)

F (x) =−det(M) J + QM̃Q. (11)

The U and F as well as M̃ = det(M) M−1 are polynomials in x. Further, the numerator
functions P (T ) for scalar and vector integrals are:
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PL(1)= 1, (12)

PL(kα
l )=

L
∑

l′=1

M̃ll′Q
α
l′ . (13)

Tensors of higher degree depend additionally on the diagonalizing rotation V for N ,

Ndiag = (α1, . . . , αL) = (V −1)+MV −1. (14)

As an example, we quote here the case of a tensor of degree two:

PL(kα
l kβ

l′)=
L
∑

i=1

[

[M̃liQi]
α[M̃l′iQi]

β −
Γ
(

Nν −
d
2
L − 1

)

Γ
(

Nν −
d
2
L
) UF

(V −1
li )+(V −1

l′i )

αi

gαβ

2

]

. (15)

The formulae simplify considerably for one-loop integrals:

U = M = M̃ = det(M) = V =
N
∑

i

xi = 1, (16)

F =−UJ + Q2 =
N
∑

i,j

[PiPj − P 2
i + m2

i ]xixj ≡
N
∑

i,j

fijxixj . (17)

Then, the tensor factors P (T ) will become:

P1(1) = 1, (18)

P1(k
α) =

N
∑

i=1

xiPi, (19)

P1(k
αkβ) =

N
∑

i=1

xiP
α
i

N
∑

j=1

xjP
β
j −

Γ
(

Nν −
d
2
− 1

)

Γ
(

Nν −
d
2

) F
gαβ

2
, etc. (20)

For the general case P1(T ) see section 4.2.

One now has to perform the x-integrations. In AMBRE, we will do this by the following
simple formula:

1
∫

0

N
∏

i=1

dxi xqi−1
i δ



1 −
∑

j

xj



=
Γ(q1) · · ·Γ(qN)

Γ (q1 + · · ·+ qN)
. (21)

From the above text it is evident that the integrand of (7) contains besides simple sums
of monomials

∏

i x
ni

i also different structures. This is due to the appearance of the factors
U(x) and F (x). Beginning with twoloop integrals, one faces additionally a dependence
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of P (T ) on x for higher rank tensors T due to the appearence of V and α, see (15). For
this reason, AMBRE is restrivted to scalar and vector integrals and/or to one-loop integrals.
Then we have to rewrite F (x) and U(x) so that (21) becomes applicable, for the one-loop
case even only the F (x). We discuss here only the F (x). The F (x) may be written as a
sum of NF ≤ 1

2
N(N + 1) non-vanishing, bilinear terms in xi:

F (x)−(Nν−dL/2) =





NF
∑

n=1

fn(i, j)xixj





−(Nν−dL/2)

=
1

Γ(Nν − dL/2)

1

(2πi)NF

NF
∏

i=1

i∞+ui
∫

−i∞+ui

dzi

NF
∏

n=2

[fn(ij)xixj ]
zn

[f1(ij)xixj ]
−(Nν−dL/2)−

∑NF
j=2

zj Γ



Nν −
dL

2
+

NF
∑

j=2

zj





NF
∏

j=2

Γ(−zj).

(22)

Here, fn(i, j) = fij if fij 6= 0. Inserting (22) (and if needed a similar representation for the
U(x)) and one of the tensor functions P (T ) into (2) allows to apply (21) for an evaluation
of the x-integrations.

As a result, any scalar Feynman integral may be represented by a single multi-dimensional
MB-integral and all the one-loop tensor integrals (and the vector L-loop integrals) by
finite sums of MB-integrals. In practice, with AMBRE we will evaluate the L-loop integrals
by a loop-by-loop technique, which essentially allows us to restrict the formalism to the
one-loop case. By the examples it will be seen that this is a powerful ansatz for many
applications.

In subsequent steps, the package MB may be called. This package needs as input some
MB-integral(s) as being prepared by AMBRE. As described in detail in [8], MB allows to
analytically expand a Feynman integral in ε and to evaluate the resulting sequence of
MB-integrals by one or the other method.

3 Using AMBRE

In this section we describe the use of the Mathematica package AMBRE (AMBRE stands for
Automatic Mellin-Barnes Representation). It is a semi-automatic procedure written for
multiloop calculations. The package works with Mathematica 5.0 and later versions of it.

The algorithm to build up MB-representations for Feynman integrals as described in the
last section consists of the following parts:

(i) define kinematical invariants which depend on the external momenta;
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(ii) make a decision about the order in which L 1-loop subloops (L ≥ 1) will be worked
out sequentially;

(iii) construct a Feynman integral for the chosen subloop and perform manipulations on
the corresponding F -polynomial to make it optimal for later use of the MB repre-
sentations;

(iv) use equation (22);
(v) perform the integrations over Feynman parameters with equation (21);
(vi) go back to step (iii) and repeat the steps for the next subloop until F in the last, Lth

subloop will be changed into an MB-integral.

(23)

The steps (ii) and (iii) must be analyzed carefully, because there exists some freedom of
choice on the order of loop integrations in step (ii) and also on the order of MB integrations
in step (iii). Different choices may lead to different forms of MB-representations.

The present version 1.0 of AMBRE can be used to construct planar Mellin-Barnes represen-
tation for:

• scalar multi-loop, multi-leg integrals
• tensor one-loop integrals
• integrals with specific higher-rank numerators ending up with a single MB-integral

In the next sections several examples will be used for an introduction to specific features
of the package.

Here, we describe basic functions of the package. The starting point of all calculations is a
proper definition of the integral (2) and of the kinematical invariants to be used. Formally,
it has to be done in the following way:

Fullintegral[{numerator}, {denominator}, {internal momenta}];

invariants = {invariants as a rule}; (24)

We recommend to use ki and pi as symbols for internal and external momenta, respectively.
Also masses should appear as symbols; a numeric value may cause problems in multi-loop
calculations.

The command Fullintegral defines a given integral. For example:

Fullintegral[{1}, {PR[k1, 0, n1]*PR[k1 + p1, m, n2]}, {k1}]; (25)

corresponds to:

∫ ddk1

iπd/2

1

(k2
1)

n1 [(k1 + p1)2 − m2]n2
. (26)
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The last argument in the Fullintegral function is a list of internal momenta. The order
of internal momenta in this list controls the ordering of integrations (if iterated). For
example {k3,k2,k1} defines the first integration to be over k3, the second over k2 and
the third over k1. The next step is to prepare a subloop of the full integral by collecting
all propagators which carry a given loop momentum ki. We do this by initiating the
consecutive functions:

IntPart[iteration] (27)

Each iteration, i = 1, 2, . . . , L, prepares the appropriate subloop for the integration over
the corresponding internal momentum. It will display a piece of the Fullintegral with:

• the numerator associated with the given subloop
• subloop for a given internal momentum
• internal momentum for which AMBRE will integrate the subloop

The execution of IntPart[iteration] proceeds as follows: IntPart[1], then IntPart[2],
then IntPart[3], and so on. If there is a need to change the ordering of integrations, one
has to change the order in the starting list of internal momenta (24). Inserting IntPart[2]

before IntPart[1] is not a proper way to do this. In the output of IntPart[iteration]
a tag message will be displayed:

Fauto::mode: U and F polynomials will be calculated

in AUTO mode. In order to use MANUAL mode execute Fauto[0]. (28)

By running Fauto[0], AMBRE will calculate the F -polynomial (with name fupc) for a
given subloop. At this stage, a user may wish to modify fupc manually, e.g. by applying
some changes in kinematics.

During the calculations, the FX function of AMBRE may appear in the F -polynomial. This
function collects full squares of sums of Feynman parameters, e.g.:

FX[X[1]+X[3]]^2 ≡ (x1 + x3)
2. (29)

Such terms appear in the F -polynomials if some masses in the loops are equal. They will
later allow to apply Barnes’ lemma leading to lower dimensional MB-representations. At
the other hand, the exponent two of the square may lead to arguments of Γ-functions in 22
with doubled integration variables, with far-reaching consequences for a later analytical
evaluation when a sum over an infinite series of residua is tried.

The basic function for deriving the Mellin-Barnes representation is:

SubLoop[integral] (30)
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This function takes output generated by IntPart[iteration] and performs the following
calculations:

• calculate the F -polynomial for the subloop (only if Fauto[1] is set)
• determine the MB-representation for the F -polynomial
• integrate over Feynman parameters xi

As a result, the MB-representation for a given subloop integral will be displayed. In mul-
tiloop calculations one will notice additional propagators (marked in red in the output of
AMBRE) which appear from the intermediate F -polynomial (see section 5.1 for an instruc-
tive example).

As mentioned, AMBRE can construct Mellin-Barnes representations for general one loop
tensor integrals. The procedure of calculating such cases is basically the same, with few
minor differences. First of all, the numerator input must be defined. A one-loop box with
numerators (k1p1)(k1p2)(k1p3) might look like this:

Fullintegral[

{k1*p1,k1*p2,k1*p3},

{PR[k1,m,n1]PR[k1+p1,0,n2]PR[k1+p1+p2,m,n3]PR[k1+p3,0,n4]},{k1}];

(31)

We have written this procedure such that numerators consist of scalar products of internal
and external momenta. In the calculations with tensors, the definitions of momentum flows
in the subloops play a crucial role for the results and have to be controlled carefully. In
one-llop subloops, the internal momentum ki is assumed to have positive sign in (5).
Another difference to scalar cases is the way how AMBRE displays results. Because they
can be long, we decided to use a short notation. For example, the following list is likely
to be obtained:

{ARint[1],ARint[2],ARint[3]} (32)

The result of the evaluation has to be understood as the sum of the elements,
ARint[1]+ARint[2]+ARint[3],
where each ARint[i] is one of the resulting MB-integrals. By executing
ARint[name of representation result,i]

one may display the appropriate ARint[i]. The procedure uses the short notation by
default, but it is also possible to use the option Result->True in order to force SubLoop

to display the full result:

SubLoop[integral,Result->True]; (33)

Finally, we have also implemented Barnes’ lemmas:
1st Barnes’ lemma
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i∞
∫

−i∞

dz Γ(a + z)Γ(b + z)Γ(c − z)Γ(d − z) =

Γ(a + c)Γ(a + d)Γ(b + c)Γ(b + d)

Γ(a + b + c + d)
. (34)

2nd Barnes’ lemma

i∞
∫

−i∞

dz
Γ(a + z)Γ(b + z)Γ(c + z)Γ(d − z)Γ(e − z)

Γ(a + b + c + d + e + z)
=

Γ(a + d)Γ(a + e)Γ(b + d)Γ(b + e)Γ(c + d)Γ(c + e)

Γ(a + b + d + e)Γ(a + c + d + e)Γ(b + c + d + e)
. (35)

The usage of Barnes’ lemmas is simple; one has to execute:

BarnesLemma[representation,i] (36)

where i is 1 or 2 for the first or second Barnes’ lemma, respectively. This function tries
to apply the lemma on all integration variables zi which do not appear in powers of
kinematical invariants. A comment will be displayed if the lemma was successfully applied.

4 One-loop integrals

We will give a couple of examples starting with construction of MB-representations for
the 1-loop Feynman integrals which are an important ingredient of the algorithm Eq. 23.
Most of the cases considered in subsequent sections are connected with massless gauge
theories or massive QED.

4.1 Example: the pentagon diagram of massive QED

Let us consider the one-loop five-point function shown in figure 1. If we use the FUPolynomial
function of the MB package, we will get:

U = x1 + x2 + x3 + x4 + x5, (37)

F = m2x2
1 + 2m2x1x3 − s15x1x3 + m2x2

3 + 2m2x1x4 − s23x1x4 + m2x2x4

− s45x2x4 + 2m2x3x4 + m2x2
4 − s12x2x5 + m2x3x5 − s34x3x5. (38)

The external momenta fulfill p2
3 = 0, p2

i = m2 for the other particles, and the sij = (pi+pj)
2

are kinematical invariants of the process. A simple counting of terms in the F -polynomial
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Fig. 1. Pentagon diagram of massive QED (example1a.nb, example1b.nb)

would prove that we get a twelve-dimensional MB-integral. Of course the terms in F can
be grouped from the beginning and we will see in a minute that a five-fold MB-integral
may be obtained; see also the sample fileexample1a.nb 2 .

First, propagators and kinematical invariants are defined:

Fullintegral[

{1},

{PR[k1 + p1, 1, n1]*PR[k1 + p1 + p5, 0, n2]*

PR[k1 + p1 + p4 + p5, 1, n3]*PR[k1 + p1 + p3 + p4 + p5, 1, n4]*

PR[k1 + p1 + p2 + p3 + p4 + p5, 0, n5]},{k1}]; (39)

The kinematics is defined in a cyclic way (see the set E1inv in kinematics.m)

p2
i = m2

i , si,i+1 = (pi + pi+1)
2, i = 1, ..., 5. (40)

Then, using the IntPart and SubLoop functions the steps (ii)-(v) of the algorithm (23)
are worked out and we end up with a nine-fold MB-representation. This representation is
due to the following F -polynomial, constructed in the automatic way by AMBRE:

F
′

=m2(x1 + x3 + x4)
2 − s15x1x3 − s23x1x4 + m2x2x4 − s45x2x4 − s12x2x5

+ m2x3x5 − s34x3x5. (41)

Some mass terms have been collected here, but the F -polynomial can be further simplified
by redefining s34 → s̄34 + m2 and s45 → s̄45 + m2, so that each term xixj appears only
once. The F

′

polynomial becomes finally:

F
′′

= m2(x1 + x3 + x4)
2 − s15x1x3 − s23x1x4 − s̄45x2x4 − s12x2x5 − s̄34x3x5, (42)

which gives a seven-fold MB-representation. In certain cases, some of the MB-integrations
do not depend on the kinematics and Barnes lemmas may be applied. Here, due to the term

2 The sample Mathematica files are part of the package AMBRE. They are also available at [9,10]
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(x1 +x3 +x4)
2 one may twice use Barnes’ first lemma 34 and thus the MB-representation

can be further reduced to a five-fold integral, see example1a.nb for details [10]. A 2 → 3
scattering process depends on five variables (plus a mass in Bhabha scattering), so a
further simplification is impossible.

In sample file example1b.nb, we use another definition of kinematical variables, namely

p2
i = m2, p1p2 = 1

2
(t′ − 2m2), p1p3 = 1

2
(t − t′ − v1),

p1p4 = m2 + 1
2
(v1 − s − t), p1p5 = 1

2
(s − 2m2), p2p3 = 1

2
v1,

p2p4 = 1
2
(s − v1 − v2 − 2m2), p2p5 = 1

2
(v2 − s − t′ + 2m2),

p3p4 = 1
2
v2, p3p5 = 1

2
(t′ − t − v2), p4p5 = 1

2
(t − 2m2).

(43)

We get directly F in the form:

F
′′′

= (x1 + x3 + x4)
2 − tx1x3 − t′x1x4 − v2x2x4 − sx2x5 − v1x3x5. (44)

No wonder, that using function SubLoop we obtain directly the smallest, seven-dimensional
integral, which then again reduces to the five-fold integral. The resulting MB-representation
for the scalar Feynman integral is:

G[1] =
−eεγE

(2πi)5

5
∏

i=1

+i∞+ui
∫

−i∞+ui

dri(−s)−3−ε−r1(−t)r2(−t′)r3

(

v1

s

)r4
(

v2

s

)r5
∏

j=1..12 Γj

Γ0Γ13

,

(45)

with a normalization

Γ0 =Γ[−1 − 2ε], (46)

and the other Γ-functions are:

Γ1 = Γ[−r2],

Γ2 = Γ[−r3],

Γ3 = Γ[1 + r2 + r3],

Γ4 = Γ[−r1 + r2 + r3],

Γ5 = Γ[−2 − ε − r1 − r4],

Γ6 = Γ[−r4],

Γ7 = Γ[1 + r2 + r4],

Γ8 = Γ[−2 − ε − r1 − r5],

Γ9 = Γ[−r5],
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Fig. 2. The one-loop massive QED box (example10.nb)

Γ10 = Γ[1 + r3 + r5],

Γ11 = Γ[3 + ε + r1 + r4 + r5],

Γ12 = Γ[3 + 2r1 + r4 + r5], (47)

and

Γ13 = Γ[3 + 2(r2 + r3) + r4 + r5]. (48)

The real parts of the integration strips are −2 < u1 < −1 and −1/2 < ui < 0, i = 2 . . . 5.

A subsequent application of MB shows that up to constant terms in ǫ, needed for an evalu-
ation of two-loop massive Bhabha scattering [11], there are maximally three-dimensional
finite contributions to be evaluated further.

4.2 Numerators

AMBRE may handle arbitrary one-loop tensor integrals with higher powers of propagators.
The corresponding Feynman parameter integral is the generalization of equation (20):

G1(T ) =
(−1)Nν

∏N
i=1 Γ(νi)

∫ N
∏

i=1

dxix
νi−1
i δ(1 −

N
∑

j=1

xj)
∑

r≤m

Γ
(

n − d
2
− r

2

)

(−2)
r
2 F n− d+r

2

{

ArP
m−r

}[µ1,...,µm]
.

(49)

Here F and P ≡ P1(kα) were introduced in equations (11) and (19). The r starts from

zero (with A0 = 1), and it is Ar = 0 for r odd, and Ar = g[µi1
µi2 · · · g µir−1

µir ] for r
even. The convention [µi1 . . .] means the totally symmetric combination of the arguments.
The momenta flow in the loop must be chosen such that the internal momentum ki is
non-negative.
In AMBRE tensorial numerators are assumed to be contracted with the external momenta
pi.

As an example, we have prepared the massive QED one-loop box of figure 2 in sample file
example10.nb with the numerator (k1 · p1)(k1 · p2)(k1 · p3). The corresponding definition
used in AMBRE is:
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Fullintegral[

{k1*p1,k1*p2,k1*p3},

{PR[k1,m,n1]PR[k1+p1,0,n2]PR[k1+p1+p2,m,n3]PR[k1+p3,0,n4]},{k1}];

(50)

Obviously, when working with tensor integrals we expect the result to be a sum of several
MB-integrals (the higher the rank is, the more integrals will be obtained). Results for
tensor integrals can be quite long, so that AMBRE displays the result in short notation,
{ARint[1],ARint[2]}, see for that section 3. Because the result is here a sum of MB-
integrals, subsequent calculations using the MB package [8] are performed separately for
each of the integrals We have cross checked numerically results for two-, three- and four-
point functions by comparing our results with decompositions of integrals into master
integrals using the Integration-by-parts method implemented in the package IdSolver.
Cross checks were done for numerators with up to six scalar products.

Finally we refer to section 5.2 for the interesting special case of irreducible numerators
arising in intermediate subloops. In certain cases, the result for a tensor integral may
remain as compact as it is for scalar integrals.

4.3 More masses

N -point functions with arbitrary internal masses and off-shell external legs give compli-
cated multi-dimensional MB-integrals. Let us consider here and in example8.nb a general
one-loop scalar vertex, Fig. 3. In this case we get a five-dimensional MB-integral:
why is here no s-dependence?

Vgeneral =
(−1)n132

Γ[n1]Γ[n2]Γ[n3]Γ[4 − 2ε − n132]

1

(2πi)5

+i∞
∫

−i∞

dz1

+i∞
∫

−i∞

dz2

+i∞
∫

−i∞

dz3

+i∞
∫

−i∞

dz4

+i∞
∫

−i∞

dz5

5
∏

i=1

Γ[−zi]

(m2
1)

z1(m2
2)

z3(m2
3)

2−ep−n132−z12345(m2
1 + m2

2 − M2
1 )

z2(m2
1 + m2

3 − M2
2 )

z4

(m2
2 + m2

3 − M2
1 − M2

2 )
z5Γ[n1 + z1124]Γ[4 − 2ε − n11223 − z11223345]

Γ[n2 + z2335]Γ[−2 + ε + n132 + z12345], (51)

where we abbreviated z1124 = 2z1 + z2 + z4 and n132 = n1 + n2 + n3, etc.

For some physical case, M1 = m2 and M2 = m3, we get a compact three-dimensional
MB-representation:
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m1

m3
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2 = M2
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p2
1 = M2

1

Fig. 3. General one-loop vertex (example8.nb)

Vsimpler =
(−1)n123

Γ[n1]Γ[n2]Γ[n3]

1

(2πi)3

+i∞
∫

−i∞

dz1

+i∞
∫

−i∞

dz2

+i∞
∫

−i∞

dz3

3
∏

i=1

Γ[−zi]

Γ[4 − 2ε − n123 − z1]

(m2
1)

z1(m2
2)

z2(m2
3)

2−ε−n123−z123(−s)z3

Γ[n1 + z1]Γ[4 − 2ε − n11223 − z11223]Γ[n2 + z223]Γ[−2 + ε + n123 + z123]. (52)

4.4 More legs

For topologies with a higher number of legs, there is an increasing number of kinematical
invariants and so the dimension of MB-representations increases. The number of dimen-
sions may become smaller after analytical continuation in ε. For a scalar or vector Bhabha
massive five-point function, Fig. 1, up to constant terms in ǫ, it includes at most three-
dimensional integrals, which hopefully can be solved even analytically [11]. In general, the
MB-representation for that case is five-dimensional, see section 1.

In example9.nb we derive MB-representations for a massless and a massive one-loop
hexagon scalar diagram, see figure 4. In general, it is an eight-fold integral, but the constant
term in ǫ includes again only up to three-dimensional MB-integrals.

If all internal lines are massive, one has to deal with a nine-dimensional MB-integral.
Again, the numerical results have been checked for both cases in the Euclidean region
against sector decomposition. The package contains the auxiliary file KinematicsGen.m

which generates the kinematics for six-point functions with arbitrary external legs.

Fig. 4. Six-point scalar functions; left: massless case (example9.nb), right: massive case
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5 Multi-loop integrals: loop-by-loop integrations

The Feynman integral (7) includes a delta-function which makes U = 1 for one-loop
diagrams there so that the MB-relation (1) acts only on F . This simplification can be made
also useful in multi-loop integrals by performing loop-by-loop integrations. We collected
few examples which will exhibit several specific features.

5.1 Example: two-loop planar box in massive QED

Let us take the massive two-loop planar box topology 3 with seven internal lines as in-
troduced in example2.nb. The momentum flow is defined in the following way, with all
momenta being incoming:

Fullintegral[

{1},

{PR[k1, m, n1]PR[k1 + p1, 0, n2]PR[k1 + p1 + p2, m, n3]

PR[k1 - k2, 0, n4]PR[k2, m, n5]PR[k2 + p1 + p2, m, n6]

PR[k2 - p3, 0, n7]}, {k2, k1}]. (53)

First, the momentum integration over k2 is taken. The k2 flow in the first subloop is
defined by the function IntPart[1], which contains all propagators with momentum k2:

integral = PR[k1 - k2, 0, n4]*PR[k2, m, n5]*

PR[k2 + p1 + p2, m,n6]*PR[k2 - p3, 0, n7]. (54)

We just mention that generally it is preferred to choose the order of iteration such that
first the loops with lowest number of lines are executed. Then their F -polynomials have
a minimal number of terms. The first loop’s F -polynomial is the SubLoop[integral]

function:

Fig. 5. Massive two-loop planar QED box (example2.nb, section 5.2: example7.nb)

3 In fact there are three double-box diagrams in massive QED. One of them is non-planar, and
we discuss here the so-called first planar diagram [3].
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F [k2] ≡ fupc=

m^2*FX[X[2] + X[3]]^2 - PR[k1, m]*X[1]*X[2]-

PR[k1 + p1 + p2, m]*X[1]*X[3] - s*X[2]*X[3] -

PR[k1 - p3, 0]*X[1]*X[4] + 4*m^2*X[3]*X[4] -

s*X[3]*X[4] - t*X[3]*X[4] - u*X[3]*X[4] (55)

It is reproduced here as derived without interactions by the user. The F -polnomial con-
tains a mass term with the FX function which later will allow to apply Barnes’ first
lemma successfully, and also a redundancy in X[3]*X[4]. The following nine-fold MB-
representation after integrating over k2 is obtained:

SubLoop1[((-1))^(n4 + n5 + n6 + n7 + z2 + z3 + z5) 4^z6

(m^2^(z1 + z6) (-s)^(z4 + z7) (-t)^z8

(-u)^(2 - ep - n4 - n5 - n6 - n7 - z1 - z2 - z3 - z4 - z5 - z6 - z7 - z8)

Gamma[-z1] Gamma[(-z2)] Gamma[(-z3)] Gamma[

2 - ep - n4 - n5 - n6 - z1 - z2 - z3 - z4] Gamma[(-z4)]

Gamma[(-z5)] Gamma[n4 + z2 + z3 + z5] Gamma[(-z6)] Gamma[(-z7)]

Gamma[-z8] Gamma[-2 + ep + n4 + n5 + n6 + n7 + z1 + z2 + z3 + z4 + z5 +

z6 + z7 + z8] Gamma[ 2 - ep - n4 - n5 - n7 + z1 - z2 - z5 - z9]

Gamma[(-z9)] Gamma[(-2) z1 + z9] Gamma[n5 + z2 + z4 + z9])/

(Gamma[n4] Gamma[n5] Gamma[n6] Gamma[4 - 2 ep - n4 - n5 - n6 - n7]

Gamma[n7] Gamma[(-2) z1])),

PR[k1, m, z2]PR[k1 + p1 + p2, m, z3]PR[k1 - p3, 0, z5]]) (56)

It is clear that the factors in front of the X[3]X[4] coefficient sum up to zero, due to
s + t + u = 4m2. To remove them from the beginning, the Fauto[0] option must be
executed, followed by a modification of F :

fupc = fupc /. u -> 4*m^2-s-t. (57)

In this way, executing the SubLoop[integral] function again, the MB-representation
becomes five-dimensional, and also the unpleasant term 4z6 is absent now.

The same situation appears in the second iteration, when integrating over k1. We can
switch to the Fauto[0] mode and again modify F . After again applying Barnes’ first
lemma, we end up with a six-dimensional integral.

Of course, by writing from the very beginning the kinematical invariants without the
invariant u, one can work out the whole case fully automatic with mode Fauto[1].
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5.2 Special numerators

The example is interesting in yet another respect. After the first integration, the prop-
agators for the second one contain four propagators, some of them with shifted indices
compared to the input:

PR[k1, m, n1+z2]PR[k1 + p1, 0, n2]PR[k1 + p1 + p2, m, n3+z3]

PR[k1 - p3, 0, z5]. (58)

[is this correct in the details???? have (n1/-/+/z2) and (n3/-/+/z3) .]
This corresponds to the one-loop box of example example10.nb discussed in section 4.2,
but with shifted indices. It includes the one new propagator with momentum q5 = k1−p3.
If we would have been evaluating an integral with numerator (q2

5)
−n8 we repeat the calcu-

lation, and get after the k2 integral an F -polynomial with one of the terms including the
propagator PR[k1 + p1 + p2 + p4, 0, 1]; see SubLoop[integral] in example7.nb [5].
It will sum up with PR[k1 + p1 + p2 + p4, 0, -n8] resulting in the following integral

integral= PR[k1, m, n1 - z2] PR[k1 + p1, 0, n2]

PR[k1 + p1 + p2, m, n3 - z3]

PR[k1 + p1 + p2 + p4, 0, -2 + ep + n4 +

n5 + n6 + n7 - n8 + z1 + z2 + z3 + z4], (59)

which has the following well-known F -form of the one-loop box:

(m^2 FX[X[1] + X[3]]^2 - s X[1] X[3] - t X[2] X[4].

What is essential here, no additional momentum structure appears.

Analyzing the irreducible numerators of the topology for the given momentum choice,
one finds that there are two scalar products which may not be represented by linear
combinations of the propagators (and thus are called irreducible): k1p3 together with k2p1

or k1p3 together with k2p2. So, q2
5 represents one of two existing irreducible numerators

and it is quite useful to have a simple MB-representation for that case. We see that
there are integrals with (selected) numerators which may be represented by a single MB-
representation as if a scalar integral would have been studied. This was used several times
in examples given in [5,6], and was also used e.g. in [12] for a study of massive two-loop
box master integrals, and for more sophisticated four-loop cases in [13].

Finally, a six-dimensional MB-integral emerges like in the scalar case. To check this in-
tegral numerically with the MB package, two analytical continuations, one in ǫ and one
in one of the powers of propagators must be done. We have checked the numerical result
also against the results we got from a sector decomposition calculation (unpublished) and
from a small-mass expanded version [14] or [12].
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k1 k2 k3 k3k2k3

Fig. 6. The loop-by-loop iterative procedure for planar topologies (example3.nb)

5.3 Further examples: A three-loop planar box, a four-loop self-energy, and a two-loop

pentagon

A three-loop planar integral, shown in figure 6, is treated in example3.nb. The result is
a 10-fold MB-representation. With the MB package it was shown that the numerical result
agrees with [6].

The dimensions of some MB-representations for several massless and massive ladder
topologies are summarized in Table 1. We apply an iterative procedure. For planar topolo-
gies the loop-by-loop iteration gives always proper topologies which obey momentum con-
servation. Only some powers of propagators change into non-integer (complex) numbers.

Massless Massive

1-loop 2-loop 3-loop 4-loop 1-loop 2-loop 3-loop 4-loop

1 4 7 10 3 8 13 18

1 4 7 10 2 6 10 14

Table 1
Dimensions of ladder topologies before and after Barnes first Lemma.

A similar procedure can be applied to more complicated topologies which obey the same
rule: integrating over an internal momentum leads to a topology with propagators and mo-
mentum flow obeying momentum conservation in the remaining parts, i.e. we get regular
subtopologies.

In this procedure, the choice of momenta flowing and the order of iterations are very
important. Look at the two-loop ladder example shown. If we allow for the momentum flow
k1 through all the outer lines, and take first the integration over k1 and then that over k2,
the final representation is not optimal (and Barnes’ lemmas do not help). Starting instead
with the k2 integration, we will again ? end up with a six-dimensional representation.

In files example4.nb and example5.nb, massless MB-representations are constructed for a
four-loop two-point topology and for a two-loop five-point massless topology, see figure 7.
The six-dimensional four-loop self-energy has been checked numerically against sector de-
composition. In example5.nb, there are three different derivations of MB-representations
for the same kinematics, defined by equation (40). In each case we got another dimen-
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Fig. 7. Massless topologies; left: four-loop two-point diagram (example4.nb), right: two-loop
five-point diagram (example5.nb)

sion of MB-integrals (though the numerical results agree). The minimal dimension of
the integral is seven when we integrate first over internal momenta of the box and then
over that of the pentagon. We checked that numerically this is the same as in [15] where
also a seven-dimensional MB-integral has been obtained. If we integrate first over the
internal momentum running in the pentagon and next over that in the box, then a nine-
dimensional MB-integral is obtained. In the third derivation, the momentum flow in the
propagators is chosen in a different way. Then a 13-dimensional MB-integral results.

6 Tadpoles

The loop-by-loop approach can also be applied to planar tadpoles. Attention must be
paid to keep the right order of integrations. Making iterations with the Fauto[1] option
(i.e. automatic), we may ? end up with three different forms of propagators in the last
iteration: one massive propagator, massive and massless propagators, or one massless
propagator. For the first situation the well known formula is used:

∫

ddk

(k2 − q2)ν
= iπd/2(−1)ν Γ[ν + ǫ − 2]

Γ[ν]

1

(q2)ν+ǫ−2
. (60)

We found that for some massive tadpoles a term (−m)α can appear which would lead to
an oscillatory error while doing numerical calculations with MB. In such a situation one
has to go back to the previous subloop and modify the F -polynomial with Fauto[0] so
that two propagators with equal momenta appear: a massive and a massless one. The
same procedure must be applied when a single massless propagator appears in the last
integral.
We give as an example example6a.nb, for the diagram also shown left in figure 8. Using
AMBRE, we have constructed a one-dimensional Mellin-Barnes representation:

T (n1, ..., n5) = (−1)2+n12345(m2)8−4ǫ−n12345

6
∏

i=1

Γ[ni]
Γ[2 − ǫ − n4]Γ[2 − ǫ − n5]

Γ[2 − ǫ]

+i∞
∫

−i∞

dz1

×Γ[−z1]Γ[2 − ǫ − n1 − z1]Γ[2 − ǫ − n2 − z1]Γ[4 − 2ǫ − n12 − z1]
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Fig. 8. Two four-loop tadpoles with three massive lines; left: one-dimensional MB-representation
(example6a.nb), right: six-dimensional MB-representation (example6b.nb)

×
Γ[−6 + 3ǫ + n1245 + z1]Γ[−8 + 4ǫ + n12345 + z1]

Γ[4 − 2ǫ − n12 − 2z1]
(61)

At this point the proper order of integrations is very important. A different choice can
lead to two- or even higher-dimensional representations.

Using MB we got for the basic integral numerically:

T (1, 1, 1, 1, 1)=0.25
1

4ǫ4
+

1

4ǫ3
+ 2.843300366757447

1

4ǫ2
+ 5.781543610421033

1

4ǫ
+22.955621881705923 + 80.89550616785341 ǫ + 1085.2836587072804 ǫ2

+4545.303884134432 ǫ3 + 35998.99383263255 ǫ4, (62)

This is in agreement with [16].

However, it appears that MB-representations for four-loop tadpoles can be more compli-
cated. In example6b.nb, treating the diagram in the right of figure 8, we give an exam-
ple where a six-dimensional MB-integral appears. Taking into account other approaches
[16,17], one may see that the MB-approach to multi-loop calculations has natural limits,
especially in the massive cases.

7 Non-planar topologies

The loop-by-loop iterative procedure described in this paper seems to be not the most
efficient approach in the case of non-planar topologies. It is known from [18] that the
massless non-planar vertex is described by a two-dimensional Feynman parameter integral.
If we consider the loop-by-loop procedure for this case, we can divide the two-loop topology
in figure 9 into two parts (follow the vertical line). The hourglass topology on the right-
hand side, with two off-shell legs, gives a three-dimensional MB-representation [6], and
adding the second part on the left-hand side we end up with a four-dimensional integral.
No matter how we arrange the momenta flows in the diagram, it cannot become better.
To get the minimal, two-dimensional integral, another approach must be realized. It is an
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Fig. 9. Non-planar massless vertex

open question to us if the representation of non-planar diagrams can be automatized in
a way like that for planar cases 4 .

8 Conclusions

We have described the package AMBRE for the construction of MB-representations for pla-
nar Feynman integrals and gave a variety of applications. For these cases, the iterative
loop-by-loop aproach gives a possibility to construct MB-integrals of minimal dimen-
sion. Usually Barnes’ first and second lemmas help to get the minimal dimension of
MB-integrals independently both of the flow of momenta in diagrams and of the order of
iterations. However, for more complicated kinematics, starting with five legs, the order of
iterations and the choice of momenta flows matters. As is shown in the case of tadpoles,
MB-representations for massive topologies are not always the best way of choice. For some
topologies quite simple representations are found, however, also multi-dimensional MB-
integrals may arise from which it is hard to get stable, accurate numerical or analytical
results.

Constructing useful MB-representations for a given Feynman integral is a kind of an art.
As an example, in [12] it was found that by contracting directly two lines in the massive
Bhabha two-loop planar integral B7l4m1 (notations due to [19,12]), the integral B5l2m2
can be obtained. After expansion in ǫ, B5l2m2 consists of eleven integrals, one being four-
dimensional. On the other hand, constructing B5l2m2 from the scratch, loop-by-loop, after
expansion in ǫ, we are left with four integrals, the highest is three-dimensional. This can
be checked easily by the reader using the MB package and both the representation B7l4m1

given in [3] (the contraction of two lines must be done there) and the representation
B5l2m2 given in [12]. There is no simple relation between both representations. Of course,
the difference is due to our lack of knowledge about more complicated relations between
integrals of different dimensionality.

Certainly, the number of integration variables is of importance for the final evaluation of
MB-integrals, both in a fully analytical form or using approximations in some kinematical
limits. In many cases some package like XSUMMER [20,21] can be used after deriving sums
over residua. This again might become non-effective if the number of the nested sums

4 The non-planar examples in the study [7] do not go beyond our observations stated here.
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– connected with dimension of the MB-integral – is too large or if the result is not in
the class of functions covered by (e.g.) XSUMMER. This is also true for the case of a fully
numerical evaluation of MB-integrals.
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