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Abstract

In this thesis we present our contributions to symbolic summation, extending WZ-
Fasenmyer methods to handle definite hypergeometric sums with nonstandard bound-
ary conditions and to compute recurrences for multiple Mellin-Barnes integrals over
hypergeometric terms. We also include concrete applications of these methods to Feyn-
man integral calculus, as well as for proving identities involving definite integrals and
special functions.
First we give a short introduction to WZ-summation methods, including K. Weg-

schaider’s approach to this method and its implementation in the package MultiSum.
Inspired by work of Sister Celine Fasenmyer, these techniques were introduced by
H. Wilf and D. Zeilberger to algorithmically compute recurrences for multiple sums
over hypergeometric terms. Their procedure is based on finding a certificate recurrence
satisfied by the hypergeometric summand and summing over this difference equation
to obtain a recurrence for the nested sum. Our proofs of two nontrivial special func-
tion identities involving Gegenbauer polynomials, provide classic applications of the
method.
As part of the collaboration between RISC and DESY coordinated by C. Schneider,

we developed an algorithmic approach to compute Feynman parameter integrals after
rewriting them as multisums over hypergeometric terms to fit the input class of classic
summation algorithms.
Since these definite sums have nonstandard boundary conditions, the WZ-method

delivers inhomogeneous recurrence relations. We designed a recursive procedure to
determine the inhomogeneous parts of these recurrences and implemented it in the
Mathematica package FSums which builds on the already existing packages, MultiSum
and C. Schneider’s Sigma.
Another approach to evaluate Feynman integrals is by representating them in terms

of nested Mellin-Barnes integrals. These complex contour integrals can also be viewed
as sums of residues at certain poles of the integrands and they are connected to the
inversion formula for the Mellin transform.
In the last part, we show how WZ-methods can be used to compute recurrences for

multiple Mellin-Barnes integrals over hypergeometric terms, eliminating the need to
search for sum representations. We applied this new algorithmic technique to prove
typical entries from the Gradshteyn-Ryzhik table of integrals using the Mellin trans-
form and to find recurrences for a class of Ising integrals.

Keywords: Symbolic summation, special functions, recurrences, difference equa-
tions, integral transforms, Mellin-Barnes integrals, Feynman integrals.
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Zusammenfassung
In der vorliegenden Arbeit wird unser Beitrag, innerhald der symbolischer Summation,
zur Erweiterung vonWZ-Methoden, durch die Behandlung definiter Summen, die nicht
Standardrandbedingungen erfüllen, sowie durch das Berechnen von Rekursionen für
mehrfache Mellin-Barnes Integrale über hypergeometrische Terme, präsentiert. Außer-
dem werden konkrete Anwendungen dieser Methoden vorgestellt, sowohl für Feynman
Integrale als auch zum Beweisen von Identitäten für definite Integrale und spezielle
Funktionen.
Zunächst geben wir eine kurze Einführung in WZ-Summation inklusive einer Be-

schreibung von K.Wegschaiders Zugang und dessen Implementierung imMathematica-
Paket MultiSum. Diese Verfahren wurden von H.S. Wilf und D. Zeilberger entwickelt
um algorithmisch Rekursionen für Mehrfachsummen über hypergeometrische Terme
zu bestimmen. Sie basieren auf das Brechnen einer Zertifikatsrekursion, die vom hy-
pergeometrischen Summanden erfüllt wird. Anschließend wird über diese Differenzen-
gleichung summiert um so eine Rekursion für die verschachtelte Summe zu erhalten.
Unsere Beweise zweier interessanter Identitäten für Gegenbauer Polynome demonstri-
eren klassische Anwendungen dieser Methode.
Im Rahmen einer Kollaboration zwischen RISC und DESY, haben wir einen algorith-

mischen Zugang zur Berechnung von Feynman Parameterintegralen entwickelt. Dazu
verwenden wir eine Reformulierung der Integrale als Mehrfachsummen über hyperge-
ometrische Terme, auf die dann die klassischen Summationsalgorithmen angewandt
werden können.
Da wir es mit definiten Summen, die keine Standardrandbedingungen erfüllen, zu

tun haben, sind die von der WZ-Methode gelieferten Rekursionen inhomogen. Wir
haben ein rekursives Verfahren entwickelt, das die inhomogenen Terme dieser Rekursio-
nen bestimmt und diese Prozedur imMathematica-Paket FSums implementiert, welches
auf die bereits existierende Pakte MultiSum und C. Schneiders Sigma aufbaut.
Ein anderer Zugang zur Evaluierung von Feynman Integralen nutzt eine Darstellung

als verschachtelte Mellin-Barnes Integrale. Diese komplexen Kurvenintegrale können
als Summen über Residuen an bestimmten Polen der Integranden betrachtet werden
und hängen mit der Inversionsformel für die Mellin-Transformation zusammen.
Zum Abschluß zeigen wir wie WZ-Methoden eingesetzt werden können, um Rekur-

sionen für mehrfache Mellin-Barnes Integrale über hypergeometrische Terme zu berech-
nen. Dieser Zugang vermeidet es erst Summendarstellungen der Integrale bestim-
men zu müssen. Diese neue algorithmische Technik haben wir angewandt um typis-
che Einträge der Gradshteyn-Ryzhik Integraltafel zu beweisen, indem wir die Mellin-
Transformation verwenden, und um Rekursionen für eine Klasse von Ising-Integralen
zu ermitteln.

Stichwörter: Symbolische Summation, spezielle Funktionen, Rekurrenzen, Dif-
ferenzengleichungen, Integraltransformationen, Mellin-Barnes Integrale, Feynman In-
tegrale.
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1 Introduction

The domain of symbolic summation concentrates on the development of algorithmic
methods for finding and proving identities involving special functions. One of the
first generic approaches to this problem was presented by Sister Celine Fasenmyer in
her thesis [25, 54] from 1945. Later, Gosper’s algorithm for indefinite summation [31]
which he implemented in Macsyma [42] became a cornerstone of the field and made it
popular as part of an emerging interest in computer mathematics systems.
Zeilberger’s generalization [75] of Gosper’s algorithm to handle definite sums and the

Wilf-Zeilberger (WZ) summation methods [76] extending Sister Celine’s technique to
multiple sums over proper hypergeometric summands in an algorithmic fashion gave
the decisive impulse for further developments of the field. These classic techniques
are the focus of this thesis and in this context, we present practical extensions of
WZ-methods.
After these starting points there were many developments, both by extending the

input class, through Karr’s summation analog [35] for the Risch integration algorithm
[55] or Zeilberger’s holonomic approach [79], and from the point of view of efficiency
[27,28,51,71,72]. Further extensions and improvements of these methods can be found
in [2, 4, 21,22,29,48,49,52,62].
As a result of the latest theoretical advances and their implementations in main-

stream computer algebra systems [3,36,41,51,72], summation methods became strong
enough for real-world applications. For instance in combinatorics [50, 61], finite el-
ement methods [39, 53] or our proofs of two special function identities presented in
Section 2.2.
Even in the light of these developments, numerical [30] or table look-up methods [26]

are still preferred over their symbolic counter parts for summation problems. A similar
situation holds for differential equation solving or integration methods. The reason
for this phenomenon, apart from efficiency considerations, may be the subtle missing
links in the usage of symbolic algorithms, mostly related to analytical issues.
In this thesis we will concentrate on some of these analytic issues such as considering

definite nested sums with nonstandard boundary conditions where the summation
range needs to be adjusted according to the set of well-defined values of the summands.
Another aspect of our work concerns algorithmically finding recurrence relations for
Mellin-Barnes integrals without the need to look for sum representations first.
In the next chapter we give a short description of WZ-summation methods, includ-

ing Wegschaider’s approach to this method and its implementation in the package

1



1 Introduction

MultiSum. The rest of Chapter 2 contains proofs for some special functions identities
obtained via these methods [66].
Chapter 3 is dedicated to our work on the evaluation of a class of Feynman parameter

integrals as part of the collaboration between RISC and DESY under the direction of
C. Schneider. Our contribution to the project was to introduce WZ-summation to
improve the computation of these intricate integrals after suitable representations in
terms of multisums over proper hypergeometric terms were found. In this context we
develop an algorithmic approach to sums with nonstandard bounds for which we set up
inhomogeneous recurrence relations. Our techniques are implemented in the package
FSums which relies on other summation packages like MultiSum and C. Schneider’s
Sigma.
In chapter 4 we present a new method to apply WZ-summation techniques for mul-

tiple Mellin-Barnes integrals over hypergeometric integrands. These complex contour
integrals, related to the inversion formula for the Mellin transform, provide an alter-
native way to compute Feynman integrals. Our procedure to determine homogeneous
and inhomogeneous recurrences for contour integrals of this type eliminates the need
to find sum representations which was a crucial non-algorithmic step in the computa-
tional approach presented in Chapter 3. We also apply this new algorithmic technique
to prove typical entries from the Gradshteyn-Ryzhik table of integrals [32] using the
Mellin transform [38] and to find recurrences for a class of Ising integrals [65].
The work presented in this thesis has lead to four papers [15, 38, 65, 66], three of

which are accepted for publication.

1.1 An illustrative example

One can summarize the theme of this thesis as finding new symbolic summation meth-
ods for computing Feynman parameter integrals. Namely, we look for strategies to
apply WZ-Fasenmyer summation techniques to large real-world problems of this type.
To illustrate our main procedures let us consider the following simple Feynman pa-
rameter integral of the type described in [15],

I =

1∫
0

1∫
0

(1− w)−1−ε/2zε/2(1− z)−ε/2

(1− wz)1−ε (1− w)N+1 dw dz,

where the Mellin moment N ∈ N is a discrete variable which becomes important in the
application of our symbolic methods. In this context, our collaborators from DESY
are interested in determining the first few coefficients of the Laurent series expansion
for the analytic object defined by the integral in ε > 0, the dimension regularization
parameter.
For this purpose, one looks for equivalent representations in terms of nested sums

over hypergeometric terms. In this case, we observe a resemblance between I and the

2



1.1 An illustrative example

integral representation for a 3F2 hypergeometric series which leads to rewriting the
integral as

I =
Γ
(
1− ε

2

)
Γ
(
1 + ε

2

)
2
(
N + 1− ε

2

) ∑
σ≥0

(1− ε)σ
(
1 + ε

2

)
σ

(2)σ
(
N + 2− ε

2

)
σ

. (1.1)

This summation problem fits the input class of WZ-summation techniques. By calling
Wegschaider’s package MultiSum we compute a certificate recurrence satisfied by its
summand, denoted here by F[N, σ],

Out[0]= (N+1)(2N−ε+2)F [N,σ]−(N−ε+1)(2N+ε+2)F [N+1, σ] = ∆σ[(−σ−1)(2N−ε+2)F [N,σ]]

where ∆σ is the forward shift operator in the variable σ. Note that the left hand
side coefficients of this recurrence are free of summation variables. When we sum
the recurrence over the given range, the delta part on the right will telescope and we
obtain a recurrence satisfied by the sum representing I.
However, in the case of definite nested sums related to Feynman integral calculus, we

often encounter summands that do not satisfy a finite support condition. These sums
are said to have nonstandard summation bounds. We can only assume that these proper
hypergeometric terms are well defined inside the original range. Therefore, the size
and analytic structure of the sums we are computing make it unfeasible to reformulate
them as even larger summation problems with standard boundary conditions, and
force us to manipulate and solve inhomogeneous recurrence relations.
Coming back to our simple example, we obtain the following recurrence for the

integral I, now denoted by SUM[N],

Out[0]= rec = (N+1)(2N−ε+2)SUM[N ]−(N−ε+1)(2N+ε+2)SUM[N+1] == Γ
“

1− ε

2

”
Γ
“ ε

2
+ 1
”
.

In chapter 3, we present an algorithmic approach to determine the inhomogeneous
side of recurrences for multiple sums with nonstandard bounds, implemented in our
package FSums. Using these inhomogeneous recurrences and procedures from the pack-
ages Sigma, EvaluateMultiSums and HarmonicSums, we have developed a strategy to
answer the question of finding the coefficients in the Laurent series expansion in ε
mentioned above in terms of multiple harmonic sums.
Another approach to Feynman integral calculus is via Mellin-Barnes integrals. For

the integral I we find a reformulation as a contour integral by using the following
special case of a result going back to Barnes [63, Chapter 4]

1
(1− wz)1−ε =

1
2πi

∫
Cs

Γ (−s) Γ (1− ε+ s)
Γ (1− ε)

(−wz)sds,

where the contour is drawn such that the ascending chain of poles of the function Γ(−s)
is separated from the descending chain coming from Γ (1− ε+ s) as we sketched in

3



1 Introduction

Figure 1.1: The integration contours Cs and Λm

Cs

Λm

0 21

ε

−1

figure 1.1. Moreover, we are allowed to reverse the order of integration and using the
property (1.4) of the beta function, we obtain the following contour integral of Barnes’
type

I =
Γ
(
1− ε

2

)
Γ
(
N − ε

2 + 1
)

4πiΓ(1− ε)

∫
Cs

Γ(−s)Γ(s+ 1− ε)Γ
(
s+ 1 + ε

2

)
(s+ 1)Γ

(
N + s− ε

2 + 2
) (−1)s ds (1.2)

which has a hypergeometric integrand satisfying the same certificate recurrence as the
summand of the sum representation (1.1) with respect to the discrete parameter N
and the integration variable s. Next we integrate this certificate recurrence over the
contour Cs and compute the integral over the ∆s-part.
We end up with an improper integral defined as∫
Cs

∆s[(−s− 1)(2N − ε+ 2)F [N, s]] := −(2N − ε+ 2) lim
m→∞

∫
Λm

(s+ 1)F [N, s] ds

where, F[N,s] denotes the integrand from (1.2). We evaluate the integrals over the
closed contours Λm by using Cauchy’s residue theorem and get the recurrence relation
rec, this time satisfied by the Mellin-Barnes integral representation of I.
In chapter 4, we give more details about this method of finding recurrences for nested

Mellin-Barnes integrals over proper hypergeometric terms. Moreover we apply it to
compute recurrences for a class of Ising integrals and to prove typical entries involving
definite integrals over various special functions from the Gradshteyn-Ryzhik table of
integrals using the Mellin transform.

1.2 Notation and preliminary notions

We will denote the set of natural numbers {0, 1, . . . } with N, positive natural numbers
{1, 2, . . . } with N∗, ring of integers with Z, field of rational numbers with Q, real
numbers with R, and complex numbers with C.

4



1.2 Notation and preliminary notions

The notation [a . . . b] for integers a, b ∈ Z will be used for the closed integer interval
{ i ∈ Z | a ≤ i ≤ b }. We will also write [a . . .∞) to denote { i ∈ Z | a ≤ i }.

1.2.1 Multi indices

We will often use tuples as indices to sums or arguments to functions. This allows us
to work with multisums while keeping the notation similar to the single sum case. For
instance, we write µ ∈ Sk to indicate µ is a k-tuple with elements from a set S. In
this case, the same letter with sub-indices will be used to denote the components of
the tuple, as in µ = (µ1, . . . , µk).
Let i, j ∈ Sn be two n-tuples with elements in S. The sum and exponents of these

tuples will be taken componentwise. More precisely, we have

i+ j = (i1 + j1, . . . , in + jn) and ij = (ij11 , . . . , i
jn
n ).

For c ∈ S, addition and multiplication of a tuple with c will be used to denote the
application of this operation to each component of the n-tuple. Then we have

i+ c = (i1 + c, . . . , in + c) and ci = (ci1, . . . , cin).

Another operation we will use is the dot product, i.e., i · j = i1j1 + · · · injn.
In Chapter 3, when discussing summation problems with nonstandard boundary

conditions, we take the norm of a tuple i ∈ Nn as the sum of its components

|i| =
n∑
l=1

il.

Tuples will also be used to denote multi-dimensional intervals. The range repre-
sented by the tuple interval [i . . . j] is the Cartesian product of the intervals defined
by the components. More precisely,

[i . . . j] = [i1 . . . j1]× [i2 . . . j2]× · · · × [in . . . jn].

Often when working with multisums, summation ranges for inner sums will depend
on the value of a variable for an outer sum. Intervals whose endpoints are defined by
tuples are not enough to represent the summation ranges for these sums, since they
are not simple cartesian products of coordinate sets. For example, in the sum

N−2∑
j0=1

N−j0−2∑
j1=0

j0∑
j2=0

j1+2∑
j3=0

F(N, j0, j1, j2, j3)

the ranges of the inner sums all depend on a summation variable from a previous
sum. We will use a variant of the cartesian product notation above to denote such

5



1 Introduction

a summation range. In order to be able to refer to a variable associated to a range,
we will specify it as a subscript to the corresponding interval. To indicate that we
are using this shorthand notation, we will use n signs instead of the × symbols. For
example, the range for the sum above can be written as

[1 . . . N − 2]j0 n [0 . . . N − j0 − 2]j1 n [0 . . . j0] n [0 . . . j1 + 2].

1.2.2 Hypergeometric series

A series
∑

k≥0 cn is called a hypergeometric series if the ratio of two consecutive terms
is a rational function, i.e., if there exist two polynomials in p(k), q(k) such that

cn+1

cn
=
p(k)
q(k)

.

In this case the terms cn will be called hypergeometric terms.
By factorizing the polynomials p and q completely, we can write the ratio of two

terms in the form

p(k)
q(k)

=
(k + a1)(k + a2) · · · (k + ap)x

(k + b1)(k + b2) · · · (k + bq)(k + 1)
,

where the constant x is the leading coefficient of p(k) in case it is not monic. Even if
the factor (k + 1) doesn’t occur in q(k), it can be added to the numerator to obtain
this traditional form.
Now we can write an explicit formula for the series. More precisely,

∞∑
k=0

cn = c0

∞∑
k=0

(a1)k · · · (a2)k
(b1)k · · · (bq)k

xk

k!

where (a)k is the rising factorial.
This last generic form is encapsulated in the notation

pFq

(
a1, . . . , ap
b1, . . . , bq

;x
)

=
∞∑
k=0

(a1)k · · · (a2)k
(b1)k · · · (bq)k

xk

k!

where the bi’s are not negative integers or zero.
Hypergeometric series play a central role in the study of special functions. Extensive

information about them can be found in classical texts like [7, 54]. More information
on hypergeometric terms and their applications in symbolic summation can be found
in [76,78].

6



1.2 Notation and preliminary notions

1.2.3 Operators

Since we will be studying recurrences, operators will be an indispensable tool. Given
a function F (k) : Cr → C, with variables k = (k1, . . . , kr), we say that F satisfies a
homogeneous polynomial recurrence relation if there exist a finite nonempty set S ⊂ Zr
and a polynomial ai(k) ∈ C[k] \ {0} for each i ∈ S such that∑

i∈S
ai(k)F (k + i) = 0 (1.3)

for all k ∈ Cr where F (k + i) is well defined for all i ∈ S. More precise definitions of
the domain of validity of the recurrence will be provided in Section 2.1.2 in the context
of hypergeometric summation.
Another way to write this recurrence relation is to consider operators which act on

the variables ki by shifting them forward by 1, i.e., Kiki = (ki + 1)Ki for all i ∈
{0, . . . , r}. Extending the multi-index notation to operators, we can write Kik = k+ i
where K = (K0, . . . ,Kr), k = (k0, . . . , kr) and i ∈ Zr as above. Now the recurrence
relation (1.3) becomes ∑

i∈S
ai(k)KiF (k) = 0.

To provide a formal setting for the manipulation of recurrences, we consider the
operator ring C[k]〈K〉 with elements of the form∑

i∈S
ai(k)Ki.

for a finite nonempty set S ⊂ Nr and nonzero polynomials ai(k) ∈ C[k]. In this ring,
addition is performed by adding the coefficients of monomials with the same degree,
i.e., ai(k)N i + ai

′(k)N i = (ai(k) + ai
′(k))N i. Multiplication on monomials is defined

by ai(k)N i ∗ aj(k)N j = (ai(k) ∗ aj(k + i))N i+j and extended linearly to polynomials.
We can also perform right or left Euclidean division [20]. Note that we restricted the
exponents to Nr which gives only forward shift operators.
We say that a function F (k) is annihilated by an operator P ∈ C[k]〈K〉, if PF = 0.

Functions that are annihilated by operators with polynomial coefficients as we defined
here are called P-recursive [67] or holonomic [79]. This class covers a wide range
of special functions and it is computationally interesting due to its closure properties.
Packages such as GeneratingFunctions [41] and gfun [56] provide tools to manipulate
recurrences obtained for these objects.
Note that a hypergeometric sequence f(n) satisfies a first order linear recurrence

with polynomial coefficients. More precisely, there exist polynomials p0(n), p1(n) such
that p1(n)f(n+ 1) + p0(n)f(n) = 0 for all n ∈ N.

7



1 Introduction

1.2.4 Rising factorials

We define the rising factorial (a)n for a ∈ C, and n ∈ Z as

(a)n :=


a(a+ 1) · · · (a+ n− 1) if n > 0
1 if n = 0

1
(a−1)(a−2)···(a+n) if n < 0 and a 6∈ {1, 2, . . . ,−n} .

Rising factorials are also known as the Pochhammer symbol. We also use the following
identity

(a)n =
Γ(a+ n)

Γ(a)
if a ∈ C and a+ n 6∈ {0,−1,−2, . . . }

1.2.5 Beta function

We define the Beta function [5, 6.2] by

B(p, q) :=
∫ 1

0
tp−1(1− t)q−1dt

for Re(p) > 0 and Re(q) > 0. Another useful representation of this function can be
obtained using its relation to the Gamma function

B(p, q) =
Γ(p)Γ(q)
Γ(p+ q)

. (1.4)

1.2.6 Multiple harmonic sums

Harmonic numbers of order k, denoted by H(k)
n , are defined as the sum

H(k)
n =

n∑
i=1

1
ik
.

In the order one case, we will omit k and just write Hn. The nested harmonic sums
occur frequently in physics applications [1,16,70,73]. We use the shorthand Sa1,...,ak(n)
for ai ∈ Z \ {0} to denote multiple harmonic sums of the form

n∑
i1=1

i1∑
i2=1

· · ·
ik−1∑
ik=1

sign(a1)i1

i
|a1|
1

sign(a2)i2

i
|a2|
2

· · · sign(ak)ik

i
|ak|
k

.

For example, S−1,2(n) is
n∑
i=1

i∑
j=1

(−1)i

i

1
j2

=
n∑
i=1

(−1)i
∑i

j=1
1
j2

i
.

Note that S1(n) = Hn. In Mathematica output, Sa1,...,ak(n) will be represented by
S[a1, . . . , an, n].

8



2 Proving special functions identities
with WZ summation methods

This chapter contains a general introduction to WZ-Fasenmyer summation [76] and
describes Wegschaider’s algorithm [72] which we use throughout the thesis. The fol-
lowing chapters rely on some notions defined in the introductory Section 2.1.
The second section presents direct proofs for two interesting special function iden-

tities involving Gegenbauer polynomials. These proofs provide an example of the
application of WZ-methods in this domain. These identities were proved by E. Syme-
onidis in [69] in an indirect fashion by showing that both sides of the equality define
the same analytic object.

2.1 A short introduction to WZ summation

Wegschaider’s algorithm [72] is an extension of multivariate WZ summation [76]. In
this chapter it is used to compute recurrences for sums of the form

Sum (µ, α) =
∑
κ1∈R1

· · ·
∑
κr∈Rr

F (µ, κ1, . . . , κr, α) . (2.1)

Under some mild side conditions described in [72], it can be applied if the summands
F (µ, κ, α) are hypergeometric in all integer variables µi from µ = (µ1, . . . , µp) and in
all summation variables κj from κ = (κ1, . . . , κr) ∈ R where R := R1× · · ·×Rr ⊆ Zr
is the summation range. The sums we consider can also depend on some additional
parameters αi from α ∈ Cl.

Remark 2.1. Recall from Section 1.2.2 that an expression F (µ, κ, α) is called hyper-
geometric, if there exists a rational function rm,k(µ, κ, α) such that F(µ,κ,α)

F(µ+m,κ+k,α) =
rm,k(µ, κ, α) at the points m ∈ Zp and k ∈ Zr where this ratio is defined.

As described in [76], WZ-summation is based on Sister Celine’s method [54] of
finding a κ-free recurrence for the hypergeometric summand F (µ, κ, α)∑

(u,v)∈S

cu,v (µ, α)F(µ+ u, κ+ v, α) = 0 (2.2)

where the finite set of shifts S ⊂ Zp+r is called the structure set of the recurrence.

9



2 Proving special functions identities with WZ summation methods

Denoting the forward-shift operators with respect to the variables from µ by M =
(M1, . . . ,Mp) and those from κ by K = (K1, . . . ,Kr) and using the multi-index nota-
tion from Section 1.2.1, the left hand side of (2.2) can be viewed as applying to F the
operator

P(µ, α,M,K) :=
∑

(u,v)∈S

cu,v (µ, α)MuKv. (2.3)

The next step consists of successively dividing the polynomial recurrence operator
P by all forward-shift difference operators

∆κjF(µ, κ, α) := (Ki − 1)F(µ, κ, α) = F (µ, κ1, . . . , κj + 1, . . . , κr, α)−F (µ, κ, α)

to obtain an operator free of shifts in the summation variables κj from κ = (κ1, . . . , κr),
called the principal part of the recurrence (2.2).
Given a structure set S together with the hypergeometric summand F (µ, κ, α),

Wegschaider’s algorithm [72] computes a certificate recurrence of the form

∑
m∈S′

am (µ, α)F(µ+m,κ, α) =
r∑
j=1

∆κj

 ∑
(m,k)∈Sj

bm,k (µ, κ, α)F(µ+m,κ+ k, α)

 ,

(2.4)
where the polynomials am (µ, α), not all zero, and bm,k (µ, κ, α), as well as the sets of
shifts Sj ⊂ Zp+r and S′ ⊂ Zp are determined algorithmically.
Here some more details on Wegschaider’s approach to WZ-summation, which will

be used throughout this thesis, are in order.
Wegschaider first observes in [72, Section 3.2] that during the chain of divisions of

the k-free operator (2.3) by the ∆κj ’s, we can obtain a zero remainder at any point.
To fix this shortcoming and prove that from a k-free recurrence one always obtains a
nontrivial certificate recurrence [72, Theorem 3.2], we need to consider more general
certificate recurrences of the form (2.4), with non-k-free polynomial coefficients in the
delta parts.
Remark 2.2. Wegschaider went even further along this path, by starting with an Ansatz
for a non-k-free recurrence of the form∑

(u,v)∈S

c′u,v (µ, κ, α)F(µ+ u, κ+ v, α) = 0 (2.5)

instead of the k-free one (2.2), which lead to smaller recurrences and much better
computation times [72, Section 3.5]. Therefore, by expanding the certificate recurrence
(2.4) we obtain precisely an operator of the form

P ′(µ, κ, α,M,K) :=
∑

(u,v)∈S

c′u,v (µ, κ, α)MuKv (2.6)

with coefficients c′u,v (µ, κ, α) ∈ C[µ, κ, α].

10



2.1 A short introduction to WZ summation

Note also that in [76], a certification procedure is introduced, based on rewriting
the right hand side as

r∑
j=1

∆κj

 ∑
(m,k)∈Sj

bm,k (µ, κ, α)F(µ+m,κ+ k, α)

 =

r∑
j=1

∆κj (rj (µ, κ, α)F(µ, κ, α)) , (2.7)

where the certificates, rj for all 1 ≤ j ≤ r, are rational functions with respect to all
variables.

Remark 2.3. As we mentioned above, the left side of (2.4) constitutes the principal part
of the k-free recurrence (2.2) and its coefficients am (µ, α) are polynomials free of the
summation variables κj from κ, while the coefficients bm,k (µ, κ, α) of the delta-parts
are polynomials involving all variables.

Remark 2.4. Since the right side of (2.4) contains the quotients of the successive divi-
sions by the delta operators, in each expression inside a delta-part ∆κj , the summand
F (µ, κ, α) will appear free of shifts in the summation variables κi with 1 ≤ i < j. This
implies that the sets Sj are of the form

Sj =
{

(m, k1, . . . , kr) ∈ Zp+r : ki = 0 for 1 ≤ i < j
}

for all 1 ≤ j ≤ r.

2.1.1 Proper hypergeometric functions

Another important remark is that we find a certificate recurrence for the hypergeomet-
ric term F (µ, κ, α), if such a recurrence exists. To be more precise, the algorithm [72]
terminates successfully, for a large enough structure set, if we restrict our input class
to proper hypergeometric summands.

Definition 2.5. [72, Definition 2.1] A proper hypergeometric term takes the form

F (µ, κ, α) = ψ(µ, κ, α)

ii∏
i=1

Γ (aiµ+ biκ+ ci(α))

jj∏
j=1

Γ (ujµ+ vjκ+ wj(α))
x1(α)µ1 . . .xp(α)µpy1(α)κ1 . . .yr(α)κr

(2.8)
with ii, jj ∈ N∗ and ai, uj ∈ Zp, bi, vj ∈ Zr, ci, wj ∈ C[α] for all 1 ≤ i ≤ ii and
1 ≤ j ≤ jj. Additionally, x1 . . . xp, y1, . . . yr ∈ C[α] are polynomials in the additional
parameters α and ψ(µ, κ, α) ∈ C[µ, κ, α].

11



2 Proving special functions identities with WZ summation methods

In contrast to the notion of “simple” hypergeometric, if a proper hypergeometric term
should contain, instead of a polynomial, a rational function ψ(µ, κ, α) ∈ C(µ, κ, α), its
denominator would factor completely into integer-linear factors of the form uµ+vκ+w
with u ∈ Zp, v ∈ Zr and w ∈ C[α]. Factors of this type can be always rewritten as
quotients of gamma functions 1

uµ+vκ+w = Γ(uµ+vκ+w)
Γ(uµ+vκ+w+1) .

Many important special functions can be represented as sums of proper hypergeo-
metric terms, such as, the Bessel function

Jn(x) =
∞∑
k=0

(−1)k

k!Γ(n+ k + 1)

(x
2

)n+2k
(2.9)

or the Jacobi polynomials

P (a,b)
n (x) =

(
n+ a

n

) n∑
k=0

(−n)k(n+ a+ b+ 1)k
k!(a+ 1)k

(
1− x

2

)k
, (2.10)

with a, b > −1, where (a)l denotes the Pochhammer symbol defined in Section 1.2.4.
As a side-remark, the Gegenbauer polynomials appearing in the next section, are a

special case of Jacobi polynomials defined for λ > −1
2 by

Cλn(x) =
(2λ)n(
λ+ 1

2

)
n

P
(λ− 1

2
,λ− 1

2)
n (x).

Especially in chapter 3, we will regard proper hypergeometric terms as complex
valued functions in all parameters. For this we need to exclude from the definition
domain the poles of the numerator gamma functions and use the complex logarithm
function to define the function xk for complex values of x and k. Like in [72], we
choose log : C∗ → C

log z = ln |z|+ i arg z with − π < arg z < π. (2.11)

Definition 2.6. [72, Definition 2.3] Let F(µ, κ, α) be a proper hypergeometric term
as in Definition 2.5 and denote by

DF := {(m, k, a) ∈ Cp+r+l : aiµ+ biκ+ ci(a) /∈ Z \ N∗ for all 1 ≤ i ≤ ii,
xj(a) 6= 0, j ∈ [1 . . . p] and yn(a) 6= 0, for n ∈ [1 . . . r]}

the set of its well-defined values. The proper hypergeometric function in µ and κ of F
is F̃ : DF → C defined as

F̃ (µ, κ, α) =ψ(µ, κ, α)

ii∏
i=1

Γ (aiµ+ biκ+ ci(α))

jj∏
j=1

Γ (ujµ+ vjκ+ wj(α))

× eµ1 log x1(α) · · · eµp log xp(α)eκ1 log y1(α) · · · eκr log yr(α)

where the complex logarithm is given by (2.11).

12



2.1 A short introduction to WZ summation

In [76], Wilf and Zeilberger show the existence of k-free recurrences for every proper
hypergeometric function and used this fact to prove the fundamental theorem of hy-
pergeometric summation.

Theorem 2.7. [76, Section 2] Every proper hypergeometric function F̃ (µ, κ, α) sat-
isfies a nontrivial certificate recurrence (2.4) in µ with delta parts in κ.

Remark 2.8. This certificate recurrence will hold for well-defined values from DF .
There are several strategies, presented in [72, Section 2.7], to extend a k-free recur-
rence for singular values of F̃ . The most general approach is to introduce a new
variable ε > 0 and compute a recurrence for a new function F̃1 having the prop-
erty lim

ε→0
F̃1(µ, κ, α, ε) = F̃(µ, κ, α) at the singular point (µ, κ, α). For example, the

binomial coefficient for n, k ∈ C is defined as(
n

k

)
= lim

ε→0

Γ(n+ 1 + ε)
Γ(k + 1)Γ(n− k + 1 + ε)

,

which also exists, for k ∈ Z, when n ∈ {−1,−2, . . . }. See also [33, Section 5.5, (5.90)].

2.1.2 Summing over certificate recurrences

Coming back to the algorithmic point of view, a k-free recurrence (2.2) was found by
Sister Celine’s technique, after making an Ansatz about its structure set S. Comparing
coefficients for all appearing power products of the form κs11 . . . κsrr in this equation with
zero, we ended up with a homogeneous system of linear equations for the coefficients
cu,v(µ, α) over the field of rational functions C(µ, α). If the set of solutions for this
equation system was empty, we have to extend the structure set S in our Ansatz.
The existence theory from [76] assures the termination of this procedure, but the

proven bounds for structure sets are far bigger than the ones arising in practice. Al-
though, Wegschaider improved this approach by using Verbaeten’s P-maximal struc-
ture sets [72, Section 2.5], instead of rectangular ones, in non-elementary applications
it was a still time and space consuming.
Nowadays, we use a very efficient method based on modular computation to guess

a candidate structure set, which was introduced and implemented in the Mathematica
package MultiSum by A. Riese and B. Zimmermann. This package which includes an
implementation of Wegschaider’s algorithm [72] can be loaded within a Mathematica
session by
In[1]:= << MultiSum.m

MultiSum Package by Kurt Wegschaider (enhanced by Axel Riese and Burkhard
Zimmermann) – c© RISC Linz – V2.02β (02/21/05)

Finally, the recurrence for the multisum (2.1) is obtained by summing the certificate
recurrence (2.4) over all variables from κ in the given summation range R ⊆ Zr. Since
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2 Proving special functions identities with WZ summation methods

it can be easily checked whether the summand F(µ, κ, α) indeed satisfies the recurrence
(2.4), the certificate recurrence also provides an algorithmic proof of the recurrence
for the multisum Sum (µ, α).
However, in most situations human inspection is needed to pass from the recurrence

(2.4) to a homogeneous or inhomogeneous recurrence for the sum. To investigate the
type of sums satisfying homogeneous recurrence relations, the notion of admissible
functions was introduced in [76, Section 3.3]. We present it here in Wegschaider’s
slightly more general context [72, Section 3.3].
For this purpose, let us consider a function F(µ, κ, α) defined on D ⊆ Zp+r × Cl

satisfying a non-k-free recurrence given by an operator P ′(µ, κ, α,M,K) of the form
(2.6) with maximal shifts τ = (τ1, . . . , τp) and δ = (δ1, . . . , δr) in µ and κ, respectively.
With respect to this recurrence operator, using only parameters from the set

DαF ,µ,τ = {(µ, α) ∈ Zp × Cl : for all m ∈ [0 . . . τ ]

∃κ ∈ Zr such that (µ+m,κ, α) ∈ D}, (2.12)

we define the support

SuppF (µ, α) = {κ ∈ Zr : (µ, κ, α) ∈ D and F(µ, κ, α) 6= 0} (2.13)

and the summation range of F

SummF ,τ,δ(µ, α) = {κ ∈ Zr : (µ+m,κ+ k, α) ∈ D
for all m ∈ [0 . . . τ ] and k ∈ [0 . . . δ]}. (2.14)

After introducing the summation range such that we can formally consider all the
sums ∑

κ∈SummF,τ,δ(µ,α)

P ′(µ, κ, α,M,K)F(µ, κ, α), (2.15)

the notion of summability is necessary for the case when the support of F is infinite.

Definition 2.9. The summand F : D ⊆ Zp+r × Cl → C is called summable with
respect to the recurrence operator (2.6) of shifting orders τ ∈ Np and δ ∈ Nr if and
only if for all (µ, α) ∈ DαF ,µ,τ we have (µ+1, α) ∈ DαF ,µ,τ and all the sums (2.15) exist.

While summability assures only that for all (µ, α) ∈ DαF ,µ,τ the sum∑
κ∈SuppF (µ,α)

F(µ, κ, α)

exists, an admissible function will have a large enough zone of zero values around its
support.
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2.1 A short introduction to WZ summation

Definition 2.10. Using the same setting as in the definition above, the function F is
called admissible with respect to the recurrence given by the operator (2.6) if and only
if for all parameters (µ, α) ∈ DαF ,µ,τ and for all shifts (m, k) ∈ [0 . . . τ ] × [0 . . . δ] we
have

SuppF (µ+m,α)− k ⊆ SummF ,τ,δ(µ, α).

Summation problems with standard boundary conditions, introduced in [76, Section
3.3], have summable and admissible summands with respect to every k-free recurrence
(2.2). These conditions are for instance satisfied by all everywhere defined functions
with compact support, like our examples (2.9) and (2.10). In these lucky situations,
after summing the relation (2.2) over a domain that is larger then the support of the
summand we get a homogeneous recurrence for Sum(µ, α)

∑
m∈[0...τ ]

 ∑
k∈[0...δ]

cm,k(µ, α)

Sum(µ+m,α) = 0 (2.16)

However, we need to ensure that not all the coefficients in (2.16) are zero. Wegschai-
der showed in [72, Theorem 3.5], that if a function F , annihilated by the certificate
recurrence (2.4), is summable and admissible with respect to the expanded form (2.5)
of this recurrence, by summing over (2.4), the ∆-parts on the right hand side telescope
and the remaining boundary values lie outside its support. Hence from the summand
recurrence one obtains a non-trivial homogeneous recurrence for the sum∑

m∈S
am (µ, α)Sum (µ+m,α) = 0. (2.17)

For example, using the package MultiSum, we proceed as follows to find a recurrence
satisfied by the Bessel function

In[2]:= JSmnd[n_, k_, x_] :=
(−1)k

k!Γ(n+ k + 1)

“x
2

”n+2k

In[3]:= FindRecurrence[JSmnd[n, k, x], n, k]

Out[3]= {xF [n− 1, k − 1]− 2nF [n, k − 1] + xF [n+ 1, k − 1] = ∆k[2nF [n, k − 1]− xF [n− 1, k − 1]]}

In[4]:= CRec = ShiftRecurrence[%[[1]], {n, 1}, {k, 1}]

Out[4]= xF [n, k]− 2(n+ 1)F [n+ 1, k] + xF [n+ 2, k] = ∆k[2(n+ 1)F [n+ 1, k]− xF [n, k]]

while the Sister Celine type of relation is returned by the command
In[5]:= CertificateToRecurrence[CRec]

Out[5]= xF [n, k + 1]− 2(n+ 1)F [n+ 1, k + 1] + xF [n+ 2, k] = 0.
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2 Proving special functions identities with WZ summation methods

Note that, in this particular situation, the recurrence for the sum (2.9) can be obtained
by summing over either of these two recurrence relations. Since this will not be the
case in general, we read off the final result from the principal part of the certificate
recurrence using another procedure from the package MultiSum
In[6]:= SumCertificate[CRec]

Out[6]= xSUM[n]− 2(n+ 1)SUM[n+ 1] + xSUM[n+ 2] = 0

where SUM[n] denotes Jn(x). Note also that before we sum over this certificate re-
currence, we need to check the limit behaviour as the summation variable k tends to
+∞ which is here implicitly assumed to be zero.
Remark 2.11. Especially in the case of large single summation problems from this input
class, such as the ones presented in Chapter 3, we find recurrences in one parameter
by calling Zeilberger’s algorithm [78] and its efficient implementation [51]
In[7]:= << zb.m;

Fast Zeilberger Package by Peter Paule, Markus Schorn and Axel Riese – c©
RISC Linz – V 3.52 (01/12/05)

Using Zeilberger’s algorithm for the sum (2.9), we obtain again the recurrence
In[8]:= Zb[JSmnd[n, k], {k, 0, Infinity}, n]

Out[8]= {xSUM[n]− 2(n+ 1)SUM[n+ 1] + xSUM[n+ 2] = 0}.

During the next chapters, we mostly study applications involving sums with nonstan-
dard boundary conditions, for which WZ-methods deliver inhomogeneous recurrences.
For example, when proving Theorem 2.12 below, we encounter identity (2.30) which
is of this type and for which we need a homogeneous recurrence relation.
As we discuss in Remark 2.16, relatively small applications with nonstandard bound-

ary conditions can be transformed into larger problems with standard boundary condi-
tions [72, Section 3.4]. This is done, for instance, by a variation of the ε-trick, described
in Remark 2.8 for extending the recurrence to singular values of the summand.
Let us apply the classic WZ-proving strategy to the following identity1

1 + (−1)n+k
k−1∑
m=0

(−1)m
(
k − 1− n

m

)(
n

k − 1−m

)
= 2k

n∑
m=k

(
−k

n−m

)
, (2.18)

where n ≥ k ≥ 1. Given its structure, it suffices to search for recurrences in the integer
parameter n ≥ 1 for the single sums

T (n) :=
n∑

m=k

(
−k

n−m

)
and S(n) :=

k−1∑
m=0

(−1)n+m

(
k − 1− n

m

)(
n

k − 1−m

)
.

1This question was emailed to Prof. Paule by Dr. Peter van der Kamp in July 2007.
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Using again Zeilberger’s algorithm [78] one finds for all n ≥ k ≥ 1 the following
recurrences:

In[9]:= Zb[(−1)n+m

 
k − 1− n

m

! 
n

k − 1−m

!
, {m, 0, k − 1}, n]

Out[9]= {(−n− 1)SUM[n] + (k − 1)SUM[n+ 1] + (−k + n+ 2)SUM[n+ 2] = 0}

In[10]:= Zb[

 
−k

n−m

!
, {m,k, n}, n]

Out[10]= {−SUM[n] + SUM[n+ 1] =
n

k − 1

 
1− k

1− k + n

!
}.

However, we started out to find a recurrence satisfied by both sides of the identity
(2.18). Using the continuity of its summand on the set of well-defined values, we
extend the sum T (n) to a summation problem with standard boundary conditions,
i.e.,

T (n) :=
n∑

m=k

(
−k

n−m

)
= lim

ε→0

∞∑
m=−∞

t(n, ε)

where t(n, ε) =
( −k
n−m

) (m−k+ε)!
(m−k)! and ε ∈ C \ Z. Now Zeilberger’s algorithm delivers a

new recurrence
In[11]:= Zb[t[n, ε], {m,−Infinity, n}, n]

Out[11]= {(ε+ n+ 1)SUM[n] + (ε− k + 1)SUM[n+ 1] + (k − n− 2)SUM[n+ 2] = 0}

which holds for all n ≥ 1 and sufficiently small ε > 0. Moreover, by letting ε tend to
zero, it follows that T (n) also satisfies the order two recurrence computed above for
S(n). At last, initial values are easy to check.
This general ε-strategy to avoid inhomogeneous recurrences increases the complexity

of the input and is undesirable in the case of large multiple sums. In chapter 3, we
present a systematic treatment of inhomogeneous recurrences coming from nested defi-
nite sums with nonstandard boundary conditions, related to the evaluation of Feynman
parameter integrals.

2.2 Two special function identities related to Poisson
integrals

The following two special function identities were obtained in [69] while computing
expressions of the Poisson kernel for geodesic balls in the cases of spheres and real
hyperbolic spaces of arbitrary dimension. By showing that the two sides of each
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2 Proving special functions identities with WZ summation methods

identity express one and the same Poisson kernel, E. Symeonidis [69] has proven the
following two theorems.

Theorem 2.12. For real x and t such that |x| < 1, |t| < 1 and n ∈ N with n ≥ 3,∑
k≥0

(
k+n−2

k

)(k+n
2
−2

k

) tk 2F1

(
k, 1− n

2
k + n

2

; t2
)
C
n−2

2
k (x) =

(
1− t2

1− 2tx+ t2

)n−1

. (2.19)

Theorem 2.13. For real x and t such that |x| < 1, |t| < 1 and n ∈ N with n ≥ 3,

∑
k≥0

Γ
(
k+n

2

)
Γ
(
k+1

2

)
Γ
(
n
2 + k − 1

) tk 2F1

(
k, k + n− 1

k + n
2

;
1−
√

1− t2
2

)
C
n−2

2
k (x) =

=
(n− 2)Γ

(
n+1

2

)
2Γ
(
n
2 + 1

) √
1− t2 2F1

(
n, 1
n
2 + 1

;
xt+ 1

2

)
. (2.20)

More details on the classical hypergeometric series

2F1

(
a, b
c

; z
)

:=
∑
l≥0

(a)l(b)l
(c)l

zl

l!

can be found, for instance, in [7, Chapter 2].
Moreover, in the above theorems, the following notation has been used to denote

the ultraspherical or Gegenbauer polynomials [7, 6.4.12],

Cλk (x) =
(λ)k

Γ(k + 1)
(2x)k 2F1

(
−k

2 ,
1−k

2
1− k − λ ;

1
x2

)
. (2.21)

Independent of Symeonidis’ original derivation and the background of these identi-
ties we present a direct approach based on computer algebra methods which is easy
to follow and could be applied when proving other similar identities.
The basic idea for our proofs is to transform the problem into that of proving equality

of sequences of coefficients defined by multiple sums. Then, such a multisum identity
is proven by finding a recurrence satisfied by both sides of the identity and checking
the equality of finitely many initial values. The structure of the identities in question
will allow us the use of WZ-summation methods to compute the necessary recurrences.
By Taylor expansion around the origin, any side of the identities (2.19) and (2.20)

can be rewritten as ∑
i,j≥0

ci,j(µ)tixj (2.22)

where the coefficients ci,j(µ) are multiple sums of the form

ci,j(µ) =
∑
κ1

· · ·
∑
κr

Fi,j (µ, κ1, . . . , κr) , (2.23)
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2.2 Two special function identities related to Poisson integrals

and the summands Fi,j (µ, κ1, . . . , κr) are hypergeometric terms in all integer variables
µn from µ = (µ1, . . . , µp) and in all summation variables κl from κ = (κ1, . . . , κr).
Since we are dealing with sums over proper hypergeometric summands of the form

(2.1) or of the more general form (2.22), recurrences in even more than one variable µn
can be found, as we described in Section 2.1, using the Mathematica implementation of
Wegschaider’s algorithm [72] which is an extension of multivariate WZ-summation [76].
Given a term F (µ, κ), proper hypergeometric in all parameters, Wegschaider’s al-

gorithm computes a recurrence of the type (2.4)

∑
m∈S′

am (µ)F(µ−m,κ) =
r∑
l=1

∆κl (Rl (µ, κ)F(µ, κ)) , (2.24)

where am (µ) are polynomials, not all zero, Rl (µ, κ) are rational functions and the
forward shift operators ∆κl are defined as in Section 2.1.
Further remarks are in place. First, by summing over the certificate recurrence

(2.24), we obtain a recurrence for the sum (2.1) because the coefficients am (µ) are free
of the summation variables from κ and the ∆-parts on the right hand side telescope.
However, when we want to pass from these certificate recurrences to recurrences

for infinite sums over some parameters κl from κ, we have to study the behavior of
expressions of the form Rl (µ, κ)F(µ, κ) when the parameter κl tends to ±∞. Only
after these limit considerations we can decide if the recurrence for the sum

∑
κF (µ, κ)

is homogeneous. Throughout the proofs of the above theorems, we will always check
the homogeneity of the recurrences we have computed algorithmically.
As it was mentioned in Section 2.1, in order to provide the input for the algo-

rithm [72], we determine a small structure set using the procedure FindStructureSet
included in the package MultiSum and already used in [40]. After making an Ansatz
about their structure, certificate recurrences are computed by solving a large system
of linear equations over a field of rational functions. If the input of the algorithm
is involved, computations will be time consuming; in addition, we might find only
high order recurrences which require many initial values to be checked. Consequently,
directly applying this algorithm for large and intricately nested multiple sums of the
more general type (2.22), for example, such as the ones appearing in the identities
(2.19) and (2.20), is not advisable in practice.
Moreover, the initial values for such output recurrences might again be complicated

sums. In this case, the algorithm can be applied again, provided that for these new
identities an independent variable µn from µ is left. Iterating this procedure, we will
end up with single sum representations of initial values that still need to be proven.
If at this last step, recurrences in a single parameter µn are sufficient, one can use
Zeilberger’s algorithm [78].
To avoid involved computations, before searching algorithmically for recurrences,

we apply coefficient comparison with respect to the additional real variables x and
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2 Proving special functions identities with WZ summation methods

t and we end up with identities whose sides are of type (2.1). This is a well-known
strategy to eliminate summation quantifiers and to reduce the number of variables.
Coefficient comparisons might lead to case distinctions, but in either case, the input
for the algorithm [72] becomes significantly smaller. In this way, we reduce the identity
(2.20) to a single summation problem and use the implementation [51] of Zeilberger’s
algorithm which is more efficient than the one described by Wegschaider in [72].
Another advantage of coefficient comparison is that it introduces “useful” discrete

variables. For instance, in view of (2.22), if we compare coefficients with respect to
tixj , these arbitrarily chosen powers i, j ∈ Z will be further independent variables in
addition to those of µ. Furthermore, the recurrences in these new variables often are
of low order, so the initial values are easier to check.

Remark 2.14. In order to keep proofs readable, we sometimes use the notation

F (µ, κ)|κl=p := F (µ, κ1, . . . , κl−1, p, κl+1, . . . , κr)

where p ∈ Z and, as above, κ = (κ1, . . . , κr) and F (µ, κ) is the summand of an
arbitrary coefficient ci,j(µ) from (2.22).

2.2.1 Proof of the first theorem

First, we observe that a change of variable y := 1 − x is useful when expanding the
denominator of the right hand side of the identity (2.19),

(
1− 2tx+ t2

)n−1 =
n−1∑
l=0

(
n− 1
l

)
(2ty)n−1−l(1− t)2l. (2.25)

In view of this substitution, it is convenient to use the following representation for the
Gegenbauer polynomials [7, 6.4.9 and 6.3.5],

C
n−2

2
k (x) =

(
k + n− 3

k

)
2F1

(
−k, k + n− 2

n−1
2

;
1− x

2

)
.

Using this form for the orthogonal polynomials C
n−2

2
k (x) and multiplying both sides

of the identity (2.19) with the expression (2.25), it remains to prove that

∑
k≥0

(
k+n−2

k

)(
k+n−3

k

)(k+n
2
−2

k

) tk
∑
j≥0

(k)j
(
1− n

2

)
j(

k + n
2

)
j

Γ(j + 1)
t2j
∑
i≥0

(−k)i (k + n− 2)i(
n−1

2

)
i
Γ(i+ 1)2i

yi

×
n−1∑
l=0

(
n− 1
l

)
(2ty)n−1−l(1− t)2l =

(
1− t2

)n−1 (2.26)

holds for all n ∈ N with n ≥ 3 and for all real variables t, y with |t| < 1 and 0 < y < 2.
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2.2 Two special function identities related to Poisson integrals

Remark 2.15. In [69] it was proven that for every fixed t with |t| < 1 the left hand
side of (2.19) is a uniformly convergent series in the interval −1 ≤ x ≤ 1. Hence, we
can proceed with the coefficient comparison with respect to the new variable y; see
also [74, 3.32].

One needs to deal with the constant coefficient with respect to y separately, so we
continue with the following case distinction, cases (a) and (b).
(a) In the multisum expression on the left hand side of (2.26), the constant coefficient

with respect to y is obtained when l = n−1 and i = 0. Consequently, this case reduces
to proving that∑

k≥0

(
k+n−2

k

)(
k+n−3

k

)(k+n
2
−2

k

) tk
∑
j≥0

(k)j
(
1− n

2

)
j(

k + n
2

)
j

Γ(j + 1)
t2j =

(
1 + t

1− t

)n−1

(2.27)

holds for all |t| < 1 and n ≥ 3.
Furthermore, using the binomial theorem, the right hand side of (2.27) can be writ-

ten as (
1+t
1−t

)n−1
=
∑
m≥0

(−t)m
m∑
s=0

(
n−1
s

)(−n+1
m−s

)
(−1)s.

Via coefficient comparison with respect to tm for an arbitrary m ≥ 0, we obtain the
equality of two single sum expressions∑

j≥0

(
k+n−2

k

)(
k+n−3

k

)(k+n
2
−2

k

) (k)j
(
1− n

2

)
j(

k + n
2

)
j

Γ(j + 1)

∣∣∣∣∣
k=m−2j

= (−1)m
m∑
s=0

(
n−1
s

)(−n+1
m−s

)
(−1)s.

(2.28)
Note here that both sides of this last identity are terminating sums and that in

classical hypergeometric notation, we relate a 7F6 to a 2F1 series. However, proceeding
algorithmically, we prefer to use Zeilberger’s algorithm to prove this identity. The
Mathematica implementation [51] delivers the same recurrence,

mSUM[m] + 2(n− 1)SUM[1 +m]− (2 +m)SUM[2 +m] = 0

for both sides of (2.28). At last, it is trivial to check that the identity (2.28) holds for
m = 0 and m = 1.
(b) We also need to show that the coefficients of all the powers r ≥ 1 of the real

variable y are zero. To determine the coefficient of yr with r ≥ 1, we choose in the
multisum on the left hand side of (2.26) the term where l = n−1+i−r. Consequently,
the identity ∑

k≥0

(
k+n−2

k

)(
k+n−3

k

)(k+n
2
−2

k

) tk
∑
j≥0

(k)j
(
1− n

2

)
j(

k + n
2

)
j

Γ(j + 1)
t2j (2.29)

×
r∑
i=0

(−k)i (k + n− 2)i(
n−1

2

)
i
Γ(i+ 1)4i

(
n− 1
r − i

)
tr−i(1− t)2i = 0
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2 Proving special functions identities with WZ summation methods

must hold for |t| < 1 and integers r ≥ 1, n ≥ 3.
Moreover, in (2.29) the coefficient of an arbitrary power p ≥ 0 of the variable t must

be zero. Therefore, we will prove that∑
k≥0

(
k+n−2

k

)(
k+n−3

k

)(k+n
2
−2

k

) ∑
j≥0

(k)j
(
1− n

2

)
j(

k + n
2

)
j

Γ(j + 1)
(2.30)

×
r∑
i=0

(−k)i (k + n− 2)i(
n−1

2

)
i
Γ(i+ 1)4i

(
n− 1
r − i

)(
2i

p− r + i− k − 2j

)
(−1)i−k = 0

holds for all integer variables r ≥ 1, p ≥ 0 and n ≥ 3.
Since there is no obvious further simplification of this expression, we now algorithmi-

cally compute a recurrence satisfied by the left hand side of (2.30). The triple sum in
(2.30) comes in three parameters; to indicate this explicitly we denote it as a function
of r, p and n,

S[r, p, n] :=
∑
k≥0

∑
j≥0

∑
i≥0

F [r, p, n, k, j, i]. (2.31)

We will only search for a recurrence in the parameters r and p, so we view the triple
sum (2.31) as a function SUM[·, ·] defined on lattice points (r, p) ∈ [1 . . .∞)× [0 . . .∞).
Note that the value of SUM[r, p] at an arbitrary integer lattice point is a finite sum
and is dependent on the integer variable n ≥ 3.
Because the new integer variables r and p have been introduced when comparing

coefficients, finding a recurrence and showing that sufficiently many initial values are
zero corresponds to proving that in (2.26) the coefficients of yrtp for all r ≥ 1 and p ≥ 0
are zero. This proof strategy, motivated by the induction principle, has also a signifi-
cant computational advantage since the sums arising from the coefficient comparison
are finite.
As it was mentioned in the introduction, before applying Wegschaider’s algorithm

[72] we determine a suitable set of shifts, called structure set, for the desired recurrence.
An algorithm for computing small structure sets is implemented in the Mathematica
package MultiSum; see also [40]. The following command determines 8 candidate
structure sets for a recurrence in r and p satisfied by the summand F [r, p, n, k, j, i] of
the triple sum from (2.30):

In[12]:= FindStructureSet [F [r, p, n, k, j, i], {r, p} , {0, 0} , {k, j, i} , {0, 1, 1} , 1]

Settling, for instance, on the first candidate structure set, Wegschaider’s algo-
rithm [72] computes a recurrence for the summand F [r, p, n, k, j, i], called certificate
recurrence. In less than 300 seconds on an average personal computer one obtains a
recurrence for the summand as output of the command

In[13]:= FindRecurrence [F [r, p, n, k, j, i], {r, p} , {k, j, i} ,%[[1]], 1,WZ→ True] .

The certificate recurrence has as coefficients polynomials free of the summation
variables k, j and i. Therefore, by summing over the certificate recurrence in the
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2.2 Two special function identities related to Poisson integrals

given summation range we obtain the desired recurrence for the sum SUM[r, p] from
(2.30).
More precisely, with respect to the variables k and j, we sum over domains that

are larger than the finite support of the summand F [r, p, n, k, j, i] for fixed integers
r, p, n and 0 ≤ i ≤ r. This assures that, after summing over the ∆k and ∆j parts
on the right hand side of any certificate recurrence, these will vanish. When it comes
to the variable i we have a nonstandard lower boundary condition which, in general,
leads from the certificate recurrence to an inhomogeneous recurrence for the triple sum
(2.31).

Remark 2.16. The classic technique to avoid inhomogeneous recurrence relations is to
introduce a new variable ε > 0 and transforming (2.31) into a problem with standard
boundary conditions with respect to all summation variables. After computing a
homogeneous recurrence for the new triple sum

S′[r, p, n, ε] =
∑
k≥0

∑
j≥0

r∑
i=−∞

F [r, p, n, k, j, i]
Γ(i+ 1 + ε)

Γ(i+ 1)
,

we get a recurrence for S[r, p, n] using the fact that lim
ε→0

S′[r, p, n, ε] = S[r, p, n]. This

method is described for instance in [72, Section 3.4]. The disadvantage of this elegant
strategy is that it increases the computation time. Since our original problem (2.30)
is already large, we can not afford to introduce an additional parameter.

Coming back to our concrete problem, inspection shows that we do not need to
apply this general ε-strategy. Namely, we can utilize the fact that the function to
which the ∆i operator is applied, vanishes for the lower bound i = 0. This becomes
clear by rewriting the ∆i part of our certificate recurrence as
∆i [ 2(n−r−1)(n+2r−1)(r+1)2 {F [r + 1, p+ 3, n, k, i, j]− F [r + 1, p+ 2, n, k, i, j]}+2(r+1)
(n− r − 1)(n2 + 2in+ rn− 2n− 2r2 − r + 1) {F [r, p+ 1, n, k, i, j]− F [r, p+ 2, n, k, i, j]} ]
= ∆i

[
2in(2i+n−3)(r+1)(−n+r+1)(4j+2k−2p+2r−3)

(i−r−1)(i−2j−k+p−r+2) F [r, 1 + p, n, k, i, j]
]
.

Note that the poles of the rational function do not cause any trouble, since

n
i−r−1

2i+1
i−2j−k+p−r+2

(
n−1
r−i
)(

2i
p+1−r+i−k−2j

)
= −

(
n

r−i+1

)(
2i+1

p+2−r+i−k−2j

)
.

Therefore, by summing over (k, j, i) ∈ N3 this certificate recurrence leads to a ho-
mogeneous recurrence for the sum SUM[r, p] and now we can use the command

In[14]:= SumCertificate [%]

Out[14]= { − (n+ p− 3r)(p− r)SUM[r, p] +
`
2n2 + 3pn− 9rn− n− p2 + 5r2 − 6p+ 10r − 3

´
SUM[r, p+ 1] +

`
−2n2 + 3pn+ 3rn+ 10n+ p2 − r2 − 4pr − 10r − 6

´
SUM[r, p+ 2]

− (n− p− r − 3)(p− r + 3)SUM[r, p+ 3] + (p− r)(n− p+ 3r)SUM[r + 1, p+ 1]

+
`
−2n2 + pn− 5rn+ n− p2 + 9r2 − 6p+ 20r + 1

´
SUM[r + 1, p+ 2]
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2 Proving special functions identities with WZ summation methods

r

r+1

r+2

p p+1 p+2 p+3 p+4

[r,p]

[r+2,p+4]

r

r+1

r+2

p p+1 p+2 p+3 p+4

[r,p]

[r+2,p+4]

(a) The multivariate recurrence

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6

r

p

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6

r

p

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6

r

p

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6

r

p

(b) The initial values

+
`
2n2 + pn+ 3rn+ 2n+ p2 − 5r2 − 4pr − 20r − 10

´
SUM[r + 1, p+ 3]

+ (p− r + 3)(n+ p+ r + 3)SUM[r + 1, p+ 4] + 2(r + 2)(n+ 2r + 1)

SUM[r + 2, p+ 3]− 2(r + 2)(n+ 2r + 1)SUM[r + 2, p+ 4] = 0 } .

One can see that the value of SUM[r+2, p+4] can be computed from the recurrence
if the values of the function SUM[·, ·] in all the integer lattice points marked with ◦ in
Figure 2.1(a) are known.
We observe that the leading term coefficient of the recurrence is non-zero for all

positive values of r and n. Having a visualization of the recurrence at hand, it is also
clear which initial values need to be checked; see Figure 2.1(b).
For an arbitrary r ≥ 1 we need to show that (2.30) holds in cases p ∈ {0, 1, 2, 3}.

Note that in all these cases the triple sum (2.30) becomes a finite sum with summation
bounds being fixed integers. At last we look at the situations when p ≥ 0 is fixed and
r = 1 or r = 2. Since i ≤ r and p−r−i ≤ k+2j ≤ p−r+i, we can rewrite S[1, p, n] and
S[2, p, n] as the sum of 4, respectively 9, terminating 7F6 series. After distinguishing
between even and odd values of the parameter p, all these hypergeometric series have
closed forms given by Dougall’s terminating 7F6 formula [7, Theorem 3.5.1].
In order to avoid such cumbersome calculations, we prefer to compute recurrences

in the parameter p ≥ 0 for r = 1 and r = 2. Checking the initial values for those
recurrences is trivial. For instance, if r = 1, we can separate the left hand side of
(2.30) into the following finite sums:

S[1, p, n] =
∑
j≥0

F [1, p, n, p− 2j − 1, j, 0] +
∑
k≥0

∑
j≥0

F [1, p, n, k, j, 1].

Zeilberger’s algorithm [78] and Wegschaider’s MultiSum package [72] deliver recur-
rences in p for the single and double sum, respectively. It only remains to compute a
recurrence for S[1, p, n] from the recurrences of its two components. To this end, we
use another Mathematica package
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2.2 Two special function identities related to Poisson integrals

In[15]:= << GeneratingFunctions.m

GeneratingFunctions Package by Christian Mallinger – c© RISC Linz – V 0.68
(07/17/03)

Given two sequences which satisfy linear recurrences with polynomial coefficients,
the command REPlus delivers a recurrence for their sum; see [41,56] for more details.
Taking as input the recurrences in p determined by the above summation algorithms,
we obtain the desired recurrence for S[1, p, n](= SUM[p]).

In[16]:= REPus [recZb, recMsum, SUM[p]]

Out[16]= (n− 2p)(p− 1)SUM[p]− 2
`
n2 − 2pn− n+ 2p2 + 4p

´
SUM[p+ 1] + 6(n− 2)(p+ 1)SUM[p+ 2]

+ 2
`
n2 + 2pn+ 3n+ 2p2 + 4p

´
SUM[p+ 3] + (p+ 3)(n+ 2p+ 4)SUM[p+ 4] = 0.

Since our recurrence has order 4, we have reduced the problem to checking initial
values for r = 1 and p ∈ {0, 1, 2, 3}. case r = 2 can be handled in a similar manner.

2.2.2 Proof of the second theorem

Since |t| < 1, the following quadratic transformation that goes back to Gauss [7, 3.1.3]

2F1

(
k, k + n− 1

k + n
2

; 1−
√

1−t2
2

)
= 2F1

(
k
2 ,

k+n−1
2

k + n
2

; t2
)

can be applied to the identity (2.20).
Furthermore, we use the representation (2.21) for the Gegenbauer polynomials and

the identity (2.20) is brought to a more convenient form for the purpose of coefficient
comparison:

∑
k≥0

Γ
(
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)
Γ
(
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)
Γ (k + 1)

(2xt)k 2F1
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k
2 ,
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2
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)
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1−k

2
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2

;
1
x2

)

=
2
n

Γ
(
n+ 1

2

)√
1− t2 2F1

(
n, 1
n
2 + 1

; xt+1
2

)
.

Thus, we will prove that

∑
k≥0

Γ
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)
Γ
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∑
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j

Γ (j + 1)
t2j
∑
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(
1−k

2

)
i(
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)
i
Γ (i+ 1)

x−2i

=
2
n

Γ
(
n+ 1

2

)√
1− t2

∑
s≥0

(n)s(
n
2 + 1

)
s

2s
(1 + xt)s (2.32)

holds for all |x| < 1, |t| < 1 and n ∈ N with n ≥ 3.
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2 Proving special functions identities with WZ summation methods

After exchanging the order of summation, on the left hand side of (2.32) the coef-
ficient of xm for any m ≥ 0 can be determined by setting k = m + 2i. Comparing
coefficients with respect to xm on both sides of (2.32), reduces the problem to showing
that∑

i≥0

Γ
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2

)
Γ
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)
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(n)s(
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)
s

2s
(2.33)

holds for all integers m ≥ 0, n ≥ 3 and real |t| < 1.
To determine a closed form for the sum on the right hand side of (2.33) we use

a classic summation formula proven, for instance, in [7, Theorem 3.5.4(i)]. More
precisely, we have∑
s≥m

(
s

m

)
(n)s(

n
2 + 1

)
s

2s
=

2−m(n)m(
n
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21−nΓ
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m
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)
Γ(n)

.

Note that to simplify this non-terminating series one could also use Zeilberger’s algo-
rithm [78].
Plugging in this closed form, (2.33) is equivalent to

∑
i≥0
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. (2.34)

On the left hand side of (2.34) the coefficient of an arbitrary power q ≥ 0 of t2 is
obtained by setting j = q − i. Comparing the coefficients of t2q in (2.34) leads to the
following identity

∑
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. (2.35)

To prove that (2.35) holds for all integers q ≥ 0 and n ≥ 3, we use again Zeilberger’s
algorithm [78]. The Mathematica implementation described in [51] delivers a first
order recurrence for the single terminating sum on the left hand side of (2.35):

(2q − 1)SUM[q]− 2(q + 1)SUM[q + 1] = 0.
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2.2 Two special function identities related to Poisson integrals

We can easily check that the expression on the right hand side of (2.35) also satisfies
this output recurrence. At last, we verify the identity (2.35) at the initial value q = 0
and we obtain

2mΓ
(
m+ 1

2

)
Γ
(m

2
+ 1
)

=
√
πΓ (m+ 1) . (2.36)

The identity (2.36) is known as Legendre’s duplication formula [7, 1.5] and it holds for
all m ≥ 0. Herewith, the proof of Theorem 2.13 is complete.

Summary

We use WZ-summation methods to prove two theorems that go back to the work of
Symeonidis [69]. These are, to our knowledge, the first direct proofs of the identities
(2.19) and (2.20).
Our method of proof uses coefficient comparisons with respect to certain parame-

ters to reduce the complexity of the identities. Coefficient comparisons lead to case
distinctions and in most cases we have single sum expressions to which Zeilberger’s
algorithm [78] can be applied because of the structure of the identities. In the sit-
uations where nested multisums remain, we can use Wegschaider’s algorithm [72] to
compute recurrences for both sides of the reduced identity. To complete the proofs we
only need to check finitely many initial values.
Note that both algorithms delivered recurrences for the summand of the given sums∑
κF (µ, κ). Summing the certificate recurrence over all the variables from κ, we

obtained the desired recurrences for the sum. In each case one can easily check that
the algorithmically computed certificate recurrence holds, so the algorithms also deliver
a proof for the recurrence satisfied by the sum.
On the other hand there are several non algorithmic aspects involved in the proofs.

In the case of Theorem 2.12, a change of variables is necessary. The proof of Theorem
2.13 becomes straight-forward after applying a quadratic transformation to one of the
hypergeometric terms involved. Also convergence issues, such as absolute convergence
for exchanging the order of summation needed to be considered at various steps of the
proofs. We have omitted these details that can be supplied by routine analysis.
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3 Symbolic summation for Feynman
parameter integrals

In this chapter we present our work in the FWF project “Symbolic Summation in Per-
turbative Quantum Field Theory,” a collaboration between RISC and DESY, coordi-
nated by Priv.-Doz. Dr. Carsten Schneider (RISC), with research partners Prof. Dr. Pe-
ter Paule (RISC) and Priv.-Doz. Dr. Johannes Blümlein (DESY).
One important goal of the project was to develop algorithmic strategies for the com-

putation of multi-sums arising in Feynman integral calculus. Our symbolic methods
have been efficiently implemented in a summation toolbox combining several Mathe-
matica packages like Carsten Schneider’s Sigma, Jakob Ablinger’s HarmonicSums, the
Paule-Schorn implementation of Zeilberger’s algorithm, Kurt Wegschaider’s MultiSum,
described in Section 2.1 of this thesis, and my recent package FSums on which we will
focus in this chapter. At the moment our toolbox bundles together the following
components:

In[17]:= << Sigma.m;

Sigma - A summation package by Carsten Schneider – c© RISC Linz – V0.8
(02/05/10)

In[18]:= << EvaluateMultiSums.m;

A package by Carsten Schneider – c© RISC Linz – (02/05/10)
In[19]:= << HarmonicSums.m;

A package by Jakob Ablinger – c© RISC Linz – (02/05/10)
In[20]:= << zb.m;

Fast Zeilberger Package by Peter Paule, Markus Schorn and Axel Riese – c©
RISC Linz – V 3.52 (01/12/05)

In[21]:= << MultiSum.m;

MultiSum Package by Kurt Wegschaider (enhanced by Axel Riese and Burkhard
Zimmermann) – c© RISC Linz – V2.02β (02/21/05)

In[22]:= << FSums.m;

A package for nested sums with nonstandard boundary conditions by Flavia Stan
– c© RISC Linz – V2.09 (02/02/09)

I would like to remark here that this work is ongoing, since we plan to optimize and
extend our procedures such that even larger problems of this type can be handled. At
the moment, we have analysed and computed all the sums coming from the two-loop
integrals described in [11]. These results will appear in the joint publication [15].
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3 Symbolic summation for Feynman parameter integrals

As we see in the next section, the first step in our procedure is rewriting Feynman
parameter integrals as multisums over hypergeometric terms to fit the input class of
classic summation algorithms. In chapter 4, we describe a new approach which can be
used for Mellin-Barnes integral representations of Feynman integrals.
In this context, my package FSums takes as input a multi-sum over proper hyper-

geometric terms and uses the WZ-summation strategy to obtain a recurrence for its
summand. An overview of WZ-summation and Wegschaider’s MultiSum package [72]
can be found in the introductory section 2.1.
However, the summation problems we considered are highly nested sums with non-

standard boundary conditions. Hence, after summing over the algorithmically com-
puted certificate recurrence (2.4), one obtains an inhomogeneous recurrence for the
sum (2.1). The right hand side of this recurrence will contain special instances of the
original multi-sum of lower nested depth. Applying the same method on these new
sums recursively, we get new recurrences. This procedure sets up a tree of recurrences
with leaves made of relations with only hypergeometric terms on their right hand sides.
For the next step of the method we are relying on the package Sigma. Namely,

these last inhomogeneous difference equations can be viewed in special difference fields
introduced by M. Karr [35] and extended significantly by C. Schneider [57–62]. In this
setting, it is possible to find solutions of such recurrences [4,60] and plugging in these
answers into the recurrences from the previous level, we can recursively compute a
solution to the initial recurrence satisfied by the multisum (2.1).
This chapter will first discuss the input delivered by our collaborators from DESY.

We present the types of multi-sums to be computed and how sum representations for
Feynman parameter integrals are found. Section 3.3 describes the package FSums and
our new approach to multi-sums with nonstandard summation bounds. We also talk
about the procedures we use from the powerful Sigma package. Illustrative examples
and several strategies to optimize our methods are also presented in these sections.

3.1 Multisums coming from Feynman integral calculus

Let us start by introducing the class of multisums delivered by our DESY collaborators
and give some examples of sum representations for Feynman parameter integrals. A
pragmatic approach to Feynman integral calculus and an account of the algorithmic
strategies used by physicists for these computations can be found in [64].
We consider a class of integrals related to the heavy flavor Wilson coefficients in

unpolarized deeply inelastic scattering, as it was described in [11], where representative
problems of this type were already computed using sum representations. A detailed
account on how to find suitable sum representations for parameter integrals of this
form is given in [14, 37]. We limit ourselves here to an intuitive example which we
simply computed by hand.
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3.1 Multisums coming from Feynman integral calculus

From our point of view, Feynman parameter integrals are functions depending on
two important parameters. On the one hand, we have the Mellin moment, N ∈ N,
needed as a free discrete variable for our summation methods. On the other hand, we
want to determine the first few coefficients of the Laurent series expansion with respect
to the dimension regularization parameter ε > 0 for the analytic object represented
by the Feynman integral.
The following Feynman parameter integral arises as part of a 3-loop ladder graph

computation described in [37, Chapter 10].

Example 3.1.

I2 =

1∫
0

. . .

1∫
0

(xy)1−ε(1− x)ε/2(1− y)ε/2

(xy − z1 − z2 + z1x+ z2y)2−3/2ε
(1− z1 − z2)N+3dz1dz2dxdy

where the integration variables z1, z2 ∈ [0, 1] must satisfy the condition z1 + z2 < 1.

We already mentioned that the first step of our strategy consists in finding a refor-
mulation of the problem in terms of multiple sums over hypergeometric terms. In this
particular instance we find

I2 =

1∫
0

. . .

1∫
0

xε/2−1(1− x)ε/2yε/2−1(1− y)ε/2

z
ε/2
1 z

ε/2
2

(
1− z1

1−x
x − z2

1−y
y

)2−3/2ε
(1− z1 − z2)N+3dz1dz2dxdy.

Using the Appell function of the first kind with its integral representation [63, Chapter
8 and 9]

F1

[
a; b, b′; c;α, β

]
:=

∞∑
m=0

∞∑
n=0

(a)m+n(b)m(b′)n
(c)m+nm!n!

αmβn

=
Γ(b)Γ(b′)Γ(c− b− b′)

Γ(c)

∫ 1

0

∫ 1

0

zb−1
1 zb

′−1
2 (1− z1 − z2)c−b−b

′−1

(1− αz1 − βz2)a
dz1dz2 (3.1)

and, for the remaining integrals, the beta function introduced in Section 1.2.5, we
obtain a reformulation of the integral in terms of a double sum

I2 =
Γ(N + 6− ε)

Γ(N + 4)Γ(1− ep
2 )2

∞∑
n=0

∞∑
m=0

(
2− 3

2ε
)
m+n

(
1− ε

2

)
m

(
1− ε

2

)
n

(N + 6− ε)m+nm!n!
×

Γ
(
ε
2 −m

)
Γ
(
ε
2 +m+ 1

)
Γ (ε+ 1)

Γ
(
ε
2 − n

)
Γ
(
ε
2 + n+ 1

)
Γ (ε+ 1)

.

Note that the Appell function F1 is convergent for arguments |z1| < 1 and |z2| < 1.
The convergence of the double series explains the additional condition imposed on the
integration variables in I2.
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3 Symbolic summation for Feynman parameter integrals

However, in most examples the binomial theorem is used to split the integrands
to a convenient form. Therefore we end up with some sums with finite summation
bounds besides the ones generated by the pattern matching procedure for generalized
hypergeometric functions. For example, in the case of the same 3-loop topology, we
also need to consider integrals of the form

I3 =

1∫
0

. . .

1∫
0

(xy)1−ε(1− x)ε/2(1− y)ε/2

(xy − z1 − z2 + z1x+ z2y)2−3/2ε
(z1 + z2)N+3dz1dz2dxdy

with z1, z2 ∈ [0, 1] such that z1 + z2 < 1. In this case we use the binomial theorem to
obtain the integral representation (3.1). Namely,

(z1 + z2)N+3 =
N+3∑
j=0

(
N + 3
j

)
(−(1− z1 − z2))j

which leads to a triple sum representation

I3 =
N+3∑
j=0

(
N + 3
j

)
(−1)j

Γ(j − ε+ 3)
Γ(1− ε/2)2Γ(j + 1)

×
∞∑
m=0

∞∑
n=0

(
2− 3

2ε
)
m+n

(1− ε/2)m(1− ε/2)n
(j − ε+ 3)m+nm!n!

× Γ(ε/2−m)Γ(ε/2 +m+ 1)Γ(ε/2− n)Γ(ε/2 + n+ 1)
Γ(ε+ 1)2

.

3.1.1 A class of summation problems

As we have seen from the above examples, the general approach, when calculating
integrals coming from specific Feynman diagrams, is to identify integral representa-
tions for known generalized hypergeometric functions and reformulate the integration
problem in terms of nested sums over hypergeometric terms.
Using this procedure, for the Feynman parameter integrals described in [11] one

finds sum representations of the form

∞∑
σ1=p1

· · ·
∞∑

σs=ps

N+c∑
j0=q0

B1∑
j1=q1

· · ·
Br∑

jr=qr

F (N, σ, j, ε) (3.2)

where
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3.1 Multisums coming from Feynman integral calculus

(i) N ≥ b is a non-negative discrete variable, ε > 0 is a real parameter and c, b are
given integers;

(ii) the upper summation bounds Bi := γiN + (j0, j1, . . . , ji−1) · ηi + νi depend on
the given constants γi, νi ∈ Z and ηi ∈ Zi for all 1 ≤ i ≤ r;

(iii) the lower summation bounds are given constants pi, ql ∈ N for all 1 ≤ i ≤ s and
0 ≤ l ≤ r, respectively;

(iv) F is a proper hypergeometric term with respect to the integer variable N and
all summation variables from (σ, j) ∈ Zs+r+1;

(v) for all 1 ≤ i ≤ s we have

lim
σi→∞

F (N, σ, j, ε) = 0. (3.3)

Remark 3.2. All applications we have encountered so far in our work with DESY, are a
special case of the summation problems (3.2). Since the sums with finite bounds result
by applying the binomial theorem several times, we have for the upper summation
bounds Ni the condition γi ∈ {0, 1} for all 1 ≤ i ≤ r and for the ηi’s

ηi = (ηi,1, ηi,2, . . . , ηi,i) with components ηi,l ∈ {−1, 0, 1} for all 1 ≤ l ≤ i.

Moreover, we impose the additional structural restriction on our sums (3.2)

(ηi, γi) ∈ {(ηi, γi) ∈ {−1, 0, 1}i × {0, 1} : ∃! l ∈ [1 . . . i] such that ηi,l 6= 0
and γi = 0⇒ ηi,l > 0 and γi = 1⇒ ηi,l < 0} (3.4)

for all 1 ≤ i ≤ r.
Note that the restriction (3.4) together with the conditions (i-v) assure the following

property for the finite summation range

[q0 . . . N + c] n [q1 . . . B1] · · ·n [qr . . . Br] ⊆ [q0 . . . N + d]r+1.

with d ∈ N a given constant. The notation n is introduced in Section 1.2.1 for a nested
range with summation bounds depending on other summation variables.
The implementation of our methods in the package FSums treats the particular case

of summation problems (3.2) which fulfill condition (3.4). In the next sections we will
describe a strategy to handle this special case. A generalization of our methods is
straight-forward but technically more involved.

Example 3.3. The following 4-fold sum is a typical entry from the list of sums repre-
sentations for a class of Feynman parameter integrals we computed as part of the work
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3 Symbolic summation for Feynman parameter integrals

described in [15].

U (N, ε) := (−1)N
∞∑

σ0=0

N−3∑
j0=0

N−j0−3∑
j1=0

j0+1∑
j2=0

(
j0 + 1
j2

)(
N − j0 − 3

j1

)

×

(
ε
2 + 1

)
σ0

(−ε)σ0(j1 + j2 + 3)σ0

(
3− ε

2

)
j1

(j1 + 4)σ0

(
− ε

2 + j1 + j2 + 4
)
σ0

(
4− ε

2

)
j1+j2

× Γ(j1 + j2 + 2)Γ(j1 + j2 + 3)Γ(N − j0 − 1)Γ(N − j1 − j2 − 1)
Γ(σ0 + 1)Γ(j1 + 4)Γ(N − j0 − 2)

where N ≥ 3 is the Mellin moment and ε > 0 the dimension regularization parameter.

3.2 Summation with nonstandard boundary conditions

The summation problem (3.2) fits the input class of WZ-methods [76], which we shortly
introduced in Section 2.1. For the proper hypergeometric summand F , Wegschaider’s
algorithm [72] delivers a certificate recurrence of the form (2.4) in N with delta parts
in the summation variables from (σ, j), i.e.,∑

m∈S′
am(N, ε)F(N +m,σ, j, ε) =

s∑
i=1

∆σi

 ∑
(m,k,n)∈Si

bm,k,n(N, σ, j, ε)F(N +m,σ + k, j + n, ε)


+

r∑
l=0

∆jl

 ∑
(m,0,n)∈Ss+l+1

cm,n(N, σ, j, ε)F(N +m,σ, j + n, ε)

 (3.5)

where the coefficients am, not all zero, bm,k,n and cm,n are polynomials.
This recurrence can be expanded in the form (2.5) as∑

(u,v,w)∈S

c′u,v,w (N, σ, j, ε)F (N + u, σ + v, j + w, ε) = 0 (3.6)

with polynomial coefficients and S ⊂ Ns+r+2 a structure set containing only positive
shifts. Let τ ∈ N and δ ∈ Nn+m+1 denote the maximal shifts in S for the discrete
parameter N and the summation variables, respectively.
Moreover, denoting the forward-shift operators with respect to the summation vari-

ables from σ by S = (S1, . . . , Ss) and from j by J = (J0, . . . , Jr), as well as the one in
N by N , we obtain the operator

P ′(N, σ, j, ε,N , S, J) :=
∑

(u,v,w)∈S

c′u,v,w (N, σ, j, ε)N uSvJw, (3.7)
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3.2 Summation with nonstandard boundary conditions

of orders τ and δ, representing the expanded form (3.6) of the certificate recurrence.
In the case of Example 3.3, we use the package MultiSum to determine a certificate

recurrence and shift it accordingly

In[23]:= FindStructureSet[summandU, N, {σ0, j0, j1, j2}, 1];

In[24]:= strSet = %[[1]]

Out[24]= {{0, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 1, 1, 0, 0}, {1, 0, 0, 0, 0}, {1, 1, 0, 0, 0}, {1, 1, 1, 0, 0}}

In[25]:= FindRecurrence[summandU, N, {σ0, j0, j1, j2}, strSet, 1,WZ→ True];

In[26]:= certRecU = ShiftRecurrence[%[[1]], {N, 1}, {j0, 1}, {σ0, 1}]

Out[26]= (N − 2)(N + 1)F [N,σ0, j0, j1, j2] + (N − 2)F [N + 1, σ0, j0, j1, j2] = ∆j0 [(j0 − N + 1)(N −
2)F [N,σ0, j0, j1, j2] + (2 − N)F [N + 1, σ0, j0, j1, j2]] + ∆j1 [0] + ∆j2 [0] + ∆σ0 [(j0 + j1 − N +

3)F [N + 1, σ0, j0 + 1, j1, j2]− (j0 −N + 2)(j1 + j2 −N + 1)F [N,σ0, j0 + 1, j1, j2]]

The expanded form (3.6) is returned by the following command and in this situation
we have τ = 1 and δ = (1, 1, 0, 0).

In[27]:= expandRecU = CertificateToRecurrence[certRecU]

Out[27]= (j0 + 2)(N − 2)F [N,σ0, j0, j1, j2]− (j1 + j2 − 1)(j0 −N + 2)F [N,σ0, j0 + 1, j1, j2]− (j0 −N +

2)(−j1− j2 +N − 1)F [N,σ0 + 1, j0 + 1, j1, j2] + (j0 + j1 + 1)F [N + 1, σ0, j0 + 1, j1, j2] + (−j0−
j1 +N − 3)F [N + 1, σ0 + 1, j0 + 1, j1, j2] = 0.

Note that the structure set strSet which we use to make an Ansatz for the compu-
tation does not need to coincide with the resulting structure set S of the non-k-free
recurrence (3.6) because some coefficients become zero.
In the next sections we are designing an algorithmic approach for the general class of

summation problems (3.2), satisfying the range restriction (3.4). Our computational
approach will be applied to several hundreds of sums of this form. Since it is not possi-
ble to analyze each sum individually, we will work under more restrictive assumptions
which hold for our entire input class.
The most important assumption is that the support and summation range of our

problem (3.2) do not satisfy the admissibility condition stated in Definition 2.10. Since
we deal with large problems it is not feasible to transform these into sums with standard
boundary conditions by introducing several new variables. Therefore, after summing
over the certificate recurrences (3.5), we need to compute the inhomogeneous parts
for the recurrence relations satisfied by the sums (3.2). Section 3.3 explains how these
inhomogeneous recurrences are constructed.
Before summing over the certificate recurrence, we need to analyze the summability

conditions given in Definition 2.9 and pre-determine the summation range (2.14) for
which all the sums (2.15) exist. For this purpose, the first condition imposed on our
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3 Symbolic summation for Feynman parameter integrals

input sum (3.2) sets the range of the free parameters N and ε as a set of the form
(2.12), i.e.,

DεF ,N,τ = [b . . .∞)× (0,∞)

with b ∈ N a given constant.
Our next task is to determine a range of the form (2.14) such that F is summable

with respect to the recurrence (3.6). Here we intervene with a second assumption for
the class of sums (3.2). Namely, their summands are well-defined only inside the initial
input range

R := Rσ ×Rj ⊆ DF (3.8)

where DF is the set of well-defined values, given by Definition 2.6. We also introduce
notations for the infinite and the finite range of the sum (3.2) as Rσ := [p . . .∞) and
Rj = [q0 . . . N + c] n [q1 . . . B1] n · · ·n [qr . . . Br], respectively.
Under these two assumptions, we can only sum the non-k-free recurrence (3.6) with

respect to a possibly smaller summation range

Summ′F ,τ,δ(N, ε) := {(σ, j) ∈ Zs+r+1 : (N + u, σ + v, j + w, ε) ∈ R
for all 0 ≤ u ≤ τ and (σ, j) ∈ [0 . . . δ]}. (3.9)

When trying to determine this more restrictive range, we observe that only sums over
the summation variables from j = (j0, j1, . . . , jr) which have finite upper summation
bounds will play a role. In this context we introduce a grading function ϕN,j with
respect to the free variable N defined on the structure set of the recurrence. This
function assigns an integer value to each term of the recurrence (3.6) assessing by how
much we go beyond the summation bounds when summing over the input range R.

Definition 3.4. Given a ring of operators R[N, σ, j, ε]〈N , S, J〉, let the grading func-
tion on the monomials of this ring

ϕN,j : M (R[N, σ, j, ε]〈N , S, J〉)→ Z

be defined as
N uSvJw 7→ |w| − u

where u ∈ N, v ∈ Ns, w ∈ Nr+1. Moreover, we introduce the grade of an operator
P ∈ R[N, σ, j, ε]〈N , S, J〉 through the function

ΦN,j : R[N, σ, j, ε]〈N , S, J〉 → Z

defined by
ΦN,j(P) = max

(u,v,w)∈SP
ϕN,j(N uSvJw),

where SP is the structure set associated to the recurrence operator P.
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3.2 Summation with nonstandard boundary conditions

Note that all operators from the ring R[N, σ, j, ε]〈N , S, J〉 have structure sets con-
taining only positive shifts, as we described in Section 1.2.3.
Moreover, the grading function ϕN,j returns the difference between the sum of shifts

in the summation variables from j and the shift in N for a term of the non-k-free
recurrence (3.6). The integer returned by ΦN,j as the grade of the recurrence operator
P ′ is the maximum value the grading function takes over the entire structure set of
the recurrence.
Using these concepts we can determine the range (3.9), Summ′F ,τ,δ(N, ε), for which

the summability condition holds with respect to the recurrence P ′. For this we need
to prove the following theorems

Theorem 3.5. Let F(N, σ, j, ε) be a proper hypergeometric summand of the form
(3.2), well-defined on the input range R and let P ′ ∈ R[N, σ, j, ε]〈N , S, J〉 be the
expanded form of a nontrivial certificate recurrence (3.5) which annihilates F for all
(N, ε) ∈ DεF ,N,τ . Denoting with g ∈ Z the grade ΦN,j(P ′) of this recurrence operator,
for all (N, ε) ∈ DεF ,N,τ we have
(i) if g ≤ 0 then the summable range, Summ′F ,τ,δ(N, ε), is the whole range R;

(ii) if g > 0 then
Summ′F ,τ,δ(N, ε) = Rσ ×R′j

with restricted range for the sums with finite summation bounds given by

R′j = [q0 . . . N + c− g] n [q1 . . . B1 − g] n · · ·n [qr . . . Br − g].

Proof. Let (u, v, w) be a point from the structure set S of the operator P ′. Since we
consider upper summation bounds under the restrictions of Remark 3.2 we know that
for all 1 ≤ i ≤ r we find an integer 0 ≤ l < i such that Bi ∈ {N − jl, jl}.
In the case (i), using several changes of variables we have

∑
σ∈Rσ

N+c∑
j0=q0

B1∑
j1=q1

· · ·
Br∑

jr=qr

F(N + u, σ + v, j + w, ε)

=
∑
σ∈Rσ

N+c+w0∑
j0=q0+w0

B1+w1∑
j1=q1+w1

· · ·
Br+wr∑

jr=qr+wr

F(N + u, σ + v, j, ε).

Let us denote the new summation bounds with B′i := Bi + wi for all 0 ≤ i ≤ r and
analyse this new summation range.
If it contains no bound of the form B′i = jl +wi with l < i and i ∈ [1 . . . r], then we

can make a change of variables from N to N − |w|. The grade condition will assure a
left-over positive shift in N , i.e., u− |w| ≥ 0, while the resulting range is included in
or equal to the original range R.
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3 Symbolic summation for Feynman parameter integrals

In the case of summation bounds of the form B′i = jl+wi with l < i and i ∈ [1 . . . r],
we use a change of variables from jl to jl + wi which leads to a new l-th summation
range [ql+wl+wi . . . B

′
l+wi]. Using changes of variables of this form we walk through

all problematic summation bounds till we have eliminated all of them and find a B′i
depending on N . We will make at most r such changes of variables and stop at latest
with a change of variables for j0. In any of these cases, a last change of variables from
N to N − |w| and the condition g ≤ 0 assures a final range smaller or equal to R.
Note that, in this process we never make the same transformation jl to jl+wi twice,

since i is decreasing. Therefore, each of the positive shifts wi will contribute at most
once to the final shift in jl.
To prove (ii), we take the point (u, v, w) ∈ S for which the grade g > 0 is attained.

By making a change of variables for N to N + d we have

∑
σ∈Rσ

N+c−g∑
j0=q0

B1−g∑
j1=q1

· · ·
Br−g∑
jr=qr

F(N + u, σ + v, j + w, ε)

=
∑
σ∈Rσ

N+c∑
j0=q0

B′1∑
j1=q1

· · ·
B′r∑

jr=qr

F(N + u+ g, σ + v, j + w, ε).

In this way, we obtained a new operator of grade zero and a summation range included
in R. Hence, the conditions from (i) are fullfiled.

Note that in the case (ii) of the theorem, we end up with a recurrence for a smaller
sum ∑

σ∈Rσ

∑
j∈R′j

F (N, σ, j, ε)

to which we need to add several sums of lower nested depth, so-called sore spots, in
order to obtain our initial sum (3.2). In the next section we present algorithms to
generate these additional sums. On the other hand, if the grade of the operator P ′
is negative or zero, the function F is summable over the initial summation range and
there are no sore spots with respect to the given recurrence (3.6).
Returning to Example 3.3, the parameter range is given by

DεF ,N,1 = [3 . . .∞)× (0,∞)

and the input range can be split into

Rσ = [0 . . .∞) and Rj = [0 . . . N − 3]j0 n [0 . . . N − j0 − 3] n [0 . . . j0 + 1].

For the non-k-free recurrence expandRecU of orders τ = 1 and δ = (1, 1, 0, 0), the
grading function returns ϕN,j(S) = {−1, 0, 1} and condition (ii) is satisfied. Therefore
we are only allowed to sum the certificate recurrence over a smaller summation range

Summ′F ,1,(1,1,0,0)(N, ε) = [0 . . .∞)×[0 . . . N−4]j0 n[0 . . . N−j0−4]n[0 . . . j0]. (3.10)
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3.2 Summation with nonstandard boundary conditions

However we obtain two additional sums, the so called sore sports, namely

U (N, ε) =
∞∑

σ0=0

N−4∑
j0=0

N−j0−4∑
j1=0

j0∑
j2=0

F(N, σ0, j0, j1, j2, ε)

+
∞∑

σ0=0

N−3∑
j0=0

N−j0−3∑
j1=0

F(N, σ0, j0, j1, j0 + 1, ε)

+
∞∑

σ0=0

N−3∑
j0=0

j0∑
j2=0

F(N, σ0, j0, N − j0 − 3, j2, ε). (3.11)

Remark 3.6. Since we are dealing with definite summation problems, we can also view
Definition 2.9 as a question of finding a large enough recurrence such that the function
F is summable over the initial summation range R. Since the range (2.14) depends
on the orders of the recurrence, we can shift the recurrence in the free variable N ,
whenever condition (ii) holds.
In this case, the summation range with respect to the shifted recurrence will be

equal the original range, i.e.,

SummF ,τ ′,δ(N, ε) := {(σ, j) ∈ Zs+r+1 : (N + u, σ + v, j + w, ε) ∈ DF
for all 0 ≤ u ≤ τ ′ and (σ, j) ∈ [0 . . . δ]} = R

where τ ′ = τ + ΦN,j(P ′) and ΦN,j(P ′) > 0.
By avoiding the computation of sore spots, this leads to an elegant strategy. How-

ever, the inhomogeneous side of the shifted recurrence becomes larger and since we are
aiming at solving this recurrence, the approach is computationally more challenging.

Although we have not yet encountered this situation in applications, it is interesting
to consider what happens when we need recurrences (3.6) in more than one parameter
for sums of the form (3.2). For example, if N = (N1, . . . , Nl) ∈ Nl, we will apply the
grading function with respect to each of the free variables and generalize the condition
(ii) to

max{ΦN1,j(P ′), . . . ,ΦNl,j(P
′)} > 0.

To use the approach described in Remark 3.6, we shift the recurrence in all parameters
Ni, with 1 ≤ i ≤ l, for which condition (ii) holds by the positive integers ΦNi,j(P ′),
respectively.
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3 Symbolic summation for Feynman parameter integrals

3.3 Inhomogeneous recurrences

In this section we present our algorithmic strategy, implemented in the package FSums,
to determine the inhomogeneous part for the recurrences satisfied by definite sums of
the form (3.2). We start by considering a simple example and go through all the steps
of our procedure.
Note that all the examples in this chapter are typical entries chosen from the list

of 1420 sums delivered to us by our collaborators from DESY, which we needed to
compute for our work at [15]. Let us start with the sum number 75 from this list

Example 3.7. For N ≥ 3 a discrete parameter and ε > 0 we introduce the sum

S (N, ε) :=
N−3∑
j0=0

N−3−j0∑
j1=0

(−1)j1(j1 + 1)
(
N − 2− j0
j1 + 1

)Γ(j0 + j1 + 1)
(
1− ε

2

)
j0

(
3− ε

2

)
j1

(4− ε)j0+j1

(
ε
2 + 4

)
j0+j1

.

As it was mentioned above, the first step is to apply WZ-summation techniques
included in the Wegschaider’s Mathematica package MultiSum [72]

In[28]:= << MultiSum.m

MultiSum Package by Kurt Wegschaider (enhanced by Axel Riese and Burkhard
Zimmermann) – c© RISC Linz – V2.02β (02/21/05)

to compute a certificate recurrence for its summand

In[29]:= termS = (−1)j1(j1 + 1)

 
N − 2− j
j1 + 1

!
Γ(j0 + j1 + 1)

`
1− ε

2

´
j0

`
3− ε

2

´
j1

(4− ε)j0+j1

`
ε
2

+ 4
´
j0+j1

.

For this, we find a suitable structure set using the command
In[30]:= FindStructureSet[termS, N, {j0, j1}, 1];

In[31]:= strSetS = %[[1]]

Out[31]= {{0, 0, 1}, {0, 1, 0}, {0, 1, 1}, {1, 1, 0}, {1, 1, 1}}

and calling further procedures from the package MultiSum
In[32]:= FindRecurrence[termS, N, {j1, j0}, strSetS, 1,WZ→ True];

In[33]:= certRecS = ShiftRecurrence[%[[1]], {N, 1}, {j0, 1}, {j1, 1}]

Out[33]= (ε − 2N)NF [N, j0, j1] − (ε − N − 3)(ε + 2N + 2)F [N + 1, j0, j1] = ∆j0 [(ε2 + j0ε + ε − 2j1 −
2j0N − 4j1N − 12N − 6)F [N + 1, j0, j1]] + ∆j1 [(ε− 2N)(j0 + j1−N + 1)F [N, j0, j1] + (−2N2 +

εN + 2j0N + 4j1N + 4N − 2ε− εj0 + 2j1)F [N + 1, j0, j1]]

we obtained a certificate recurrence which we afterwards shift to get only positive
shifts in the recursion parameter N and in the summation variables.
Note that the precomputed structure set was used as input for the FindRecurrence

function, since it translates into an Ansatz for the non-k-free recurrence (3.6). As it
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3.3 Inhomogeneous recurrences

was described in Section 2.1, finding a small Ansatz for our computation proves to be
vital from the efficiency point of view when dealing with more involved sums of the
form (3.2).
Note also that the shifts of the resulting non-k-free recurrence do not necessarily

coincide with the structure set strSetS, since some coefficients of the Ansatz might be
zero. In this case we obtain the following expanded form of the certificate recurrence

In[34]:= expandRecS = CertificateToRecurrence[certRecS]

Out[34]= (j0 + j1 + 1)(ε− 2N)F [N, j0, j1] + (ε− 2N)(−j0 − j1 +N − 2)F [N, j0, j1 + 1] + (2N2 − εN −
2j0N − 4j1N − 8N + 2ε+ εj0 − 2j1 − 2)F [N + 1, j0, j1 + 1] + (−ε2 − j0ε− 2ε+ 2j1 + 2j0N +

4j1N + 14N + 6)F [N + 1, j0 + 1, j1] = 0.

The recurrence certRecS is of the form (2.4) and has the properties described in
Remark 2.3. Therefore, summing over this certificate leads to a recurrence for the sum
S(N, ε) with its inhomogeneous part containing special instances of the double sum
with lower nested depth, i.e., single sums and simple hypergeometric terms.
Moreover, we impose on our summation problem the assumptions described in Sec-

tion 3.2, regarding nonstandard summation bounds. Therefore, we need to find the
range (3.9) over which we can sum the certificate and determine the inhomogeneous
part of the recurrence satisfied by the sum. If the range is smaller then the input
range of the initial sum S(N, ε), we additionally need to compute some extra sums,
called sore spots. In the next subsections we present the main steps of this strategy
for setting up inhomogeneous recurrence relations for sums of the form (3.2).

3.3.1 Delta boundary sums and sore spots

Let us start by summing over the initial summation range

R = [0 . . . N − 3]j0 n [0 . . . N − 3− j0]

over the delta parts on the right hand side of the recurrence. For this we denote
the polynomial coefficients inside the delta parts ∆j0 and ∆j1 with e[N, j0, j1, ε] and
d1[N, j0, j1, ε], d2[N, j0, j1, ε], respectively.
When summing over the ∆j0-part we generate two type of sums on the right side of

the recurrence, the ∆-boundary sums and so-called telescoping compensating sums.

N−3∑
j0=0

N−3−j0∑
j1=0

∆j0 [e[N, j0, j1, ε]F [N + 1, j0, j1]] =
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3 Symbolic summation for Feynman parameter integrals

=
N−2∑
j0=1

N−2−j0∑
j1=0

e[N, j0, j1, ε]F [N + 1, j0, j1]−
N−3∑
j0=0

N−3−j0∑
j1=0

e[N, j0, j1, ε]F [N + 1, j0, j1]

=
N−3−j0∑
j1=0

(e[N, j0, j1, ε]F [N + 1, j0, j1])

∣∣∣∣∣∣
j0=N−2

j0=0

+
N−2∑
j0=1

e[N, j0, N − 2− j0, ε]F [N + 1, j0, N − 2− j0]. (3.12)

Let us also consider the first term inside the ∆j1-part where no telescoping compen-
sation is necessary

N−3∑
j0=0

N−3−j0∑
j1=0

∆j1 [d1[N, j0, j1, ε]F [N, j0, j1]] =
N−3∑
j0=0

(d1[N, j0, j1, ε]F [N, j0, j1])

∣∣∣∣∣∣
j1=N−2−j0

j1=0

=
N−3∑
j0=0

d1[N, j0, N − 2− j0, ε]F [N, j0, N − 2− j0]−
N−3∑
j0=0

d1[N, j0, 0, ε]F [N, j0, 0].

We observe that, after telescoping, the upper bound N −2− j0 for j1 translates into
a term outside the original summation range, under the assumption that our summand
termS is well-defined only inside this range R. As we showed in Section 3.2, we need
to adjust the range over which we sum the certificate recurrence or shift this relation
with respect to the free parameter N .
We can compute the grade of the non-k-free recurrence operator P ′ for expandRecS,

by looking at its structure set

S = {{0, 0, 0}, {0, 0, 1}, {1, 0, 1}, {1, 1, 0}}.

In this case the grade is

ΦN,j(P ′) = max
(u,w)∈S

|w| − u = max{1, 0} = 1.

Therefore, we generate the new range

Summ′F ,1,(1,1)(N, ε) = [0 . . . N − 4]j0 n [0 . . . N − j0 − 4]

and we will consider separately the sore spot

S(N, ε) =
N−4∑
j0=0

N−4−j0∑
j1=0

F [N, j0, j1] +
N−3∑
j0=0

F [N, j0, N − j0 − 3]. (3.13)
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3.3 Inhomogeneous recurrences

The package FSums contains a general strategy to obtain the necessary sore spots
for sums of the form (3.2) over a summand F(N, σ, j, ε) with input range

R = Rσ × [q0 . . . B0] n · · ·n [qr . . . Br]

where Rσ denotes the range corresponding to the infinite sums. Let g be the grade
returned by ΦN,j(P ′) for a given certificate recurrence operator P ′ of the form (3.7)
which annihilates F .

Algorithm 1 SoreSpots [ F [N, σ, j, ε], [q0 . . . B0] n · · ·n [qr . . . Br], g,N,Rσ ]
soreSpots =0;
for i ∈ [r . . . 0] do

soreSpots +=
∑

σ∈Rσ

B0∑
j0=q0

· · ·
Bi−1∑

ji−1=qi−1

Bi∑
ji=Bi−g+1

Bi+1−g∑
ji+1=qi+1

· · ·
Br−g∑
jr=qr

F [N, σ, j, ε]

end for
return soreSpots

The procedure SoreSpots will also deliver the new sum we consider, i.e., for our
running example it returns precisely the equivalent formulation (3.13) or, in the case
of the 4-fold sum U(N, ε), the right hand side of identity (3.11).

3.3.2 Shift and telescoping compensation

As we described above, we continue from now on with the new sum

S ′(N, ε) =
N−4∑
j0=0

N−4−j0∑
j1=0

F [N, j0, j1].

Shift compensating sums are another side-effect of nonstandard summation bounds.
They appear when we sum over the left hand side of the recurrence over a given
definite range, because our upper summation bounds depend on the other summation
parameters.
Hence, in the case of the certificate recurrence certRecS summing over the restricted

range Summ′F ,1,(1,1)(N, ε), we obtain

N−4∑
j0=0

N−4−j0∑
j1=0

F [N + 1, j0, j1] = S ′(N + 1, ε)−
N−3∑
j=0

F [N + 1, j,N − 3− j]. (3.14)

Compensating sums of this form are more cumbersome to generate since they appear
only in the case of upper summation bounds depending on the free variable N . They
are also very similar to the telescoping compensating sums which appeared for instance
in (3.12).
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3 Symbolic summation for Feynman parameter integrals

Denoting by sh ∈ N the shift in a generic parameter p and mixing the two sets of
summation parameters (σ, j) into κ with the summable range R, let us first introduce
the strategy for determining the shift compensating sums which is implemented in a
procedure of the package FSums.

Algorithm 2 CompensatingSums [ F [p, κ, ε],R, sh, p ]
if R is empty then
return F [p+ sh, j, ε]

end if
{comment: separate the first sum from all the other ones in R}
currentRange = R[1]
lowerRange = R[2 . . . ]
rest = CompensatingSums [ F [p, j, ε], lowerRange, sh, p]
{comment: let’s process the current range}
read from currentRange variable v, lower bound q and upper bound B
if B free of N then
return

∑
currentRange

rest

end if
{comment: see Remark 3.2 regarding structure of

upper bounds → coefficient of p in B is either 1 or -1 }
if Coefficient[B, N] = 1 then

CSums =
∑

currentRange
rest -

B+sh∑
v=B+1

rest

else

CSums =
∑

currentRange
rest +

B∑
v=B−sh+1

rest

end if

return
B+sh∑
v=q

rest[1] + CSums

We have again included the new shifted sum as the first term of the output. For
example,

In[35]:= CompensatingSums[F [N, j0, j1], {{j0, 0, N − 4}, {j1, 0, N − 4− j0}}, N, 1]

Out[35]= {{F [1+N, j0, j1], {{j0, 0,−3+N}, {j1, 0,−3−j0+N}}}, {−F [1+N, j0,−3−j0+N ], {{j0, 0,−3+

N}}}, {−F [1 +N,−3 +N, j1], {{j1, 0,−1}}}}

delivers the right hand side of (3.14) since the last term represents a trivial sum.
Note that we represent a sum in the form of a list with two elements, where the

elements are the summand and the range. We also store the range as a list of lists each
containing the summation variable, the lower bound and the upper bound. In some
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3.3 Inhomogeneous recurrences

situations we introduce a data structure FSum to encapsulate this list representation.
Moreover, after summing over the left hand side of the recurrence, we will move the

resulting compensating sums, with a change of sign, to the inhomogeneous part of the
recurrence. We have also implemented a short function which renames the first term
of the output.

Algorithm 3 ShiftCompensatingSums [ F [N,κ, ε],R, N, sh]
CSums = CompensatingSums[ F [N,κ, ε],R, N, sh ]
if Length[CSums] > 1 then
CSums = FSum ( CSums[2. . . ] )
eliminate trivial sums from CSums
return SUM[N + sh] + CSums

else
return SUM[N + sh]

end if

Therefore, we will have
In[36]:= ShiftCompensatingSums[F [N, j0, j1], {{j0, 0, N − 4}, {j1, 0, N − 4− j0}}, N, 1]

Out[36]= SUM[N + 1] + FSum[−F [1 +N, j0,−3− j0 +N ], {{j0, 0,−3 +N}}].

As we mentioned above, we also use the CompensatingSums procedure to generate
the telescoping compensating sums which appear when summing over the ∆-parts on
the right hand side of the certificate recurrence, again because of the structure of the
summation bounds for the nested sums (3.2).
To illustrate this connection more clearly, let us go back to the example (3.3) and

sum over the first term from the ∆j0-part of the certificate recurrence certRecU using
its restricted range (3.10)

∞∑
σ0=0

N−4∑
j0=0

N−j0−4∑
j1=0

j0∑
j2=0

∆j0 [(N − j0 + 1)(N − 2)F [N, σ0, j0, j1, j2]]

=
∞∑

σ0=0

N−j0−4∑
j1=0

j0∑
j2=0

(N − j0 + 1)(N − 2)F [N, σ0, j0, j1, j2]

∣∣∣∣∣∣
j0=N−3

j0=0

+
∞∑

σ0=0

N−3∑
j0=1

j0−1∑
j2=0

(N − j0 + 1)(N − 2)F [N, σ0, j0, N − j0 − 3, j2]

−
∞∑

σ0=0

N−3∑
j0=1

N−j0−4∑
j1=0

(N − j0 + 1)(N − 2)F [N, σ0, j0, j1, j0]. (3.15)
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Note that the first element on the right side of this identity denotes the ∆-boundary
sums while the last two are due to telescoping compensation. These last sums are
delivered by

In[37]:= CompensatingSums[F [N,σ0, j0 − 1, j1, j2], {{σ0, 0,∞}, {j1, 0, N − j0 − 4},
{j2, 0, j0}}/.j0 → (j0 − 1), j0, 1]

Out[37]= {{F [N,σ0, j0, j1, j2], {{σ0, 0,∞}, {j1, 0,−4−j0+N}, {j2, 0, j0}}}, {F [N,σ0, j0,−3−j0+N, j2],

{{σ0, 0,∞}, {j2, 0,−1 + j0}}}, {−F [N,σ0, j0, j1, j0], {{σ0, 0,∞}, {j1, 0,−4− j0 +N}}}}.

Note that we obtain the delta boundary sums by evaluating this first entry for j0 = 0
and j0 = N−3 and the compensating sums by adding the shifted sum [1 . . . N−3]j0 to
the range of the other terms of the output. This strategy is implemented in a simple
function which can handle the entire right hand side of a certificate recurrence.

Algorithm 4 ProcessDeltas [ RHS, R]
boundarySums = 0
compSums = 0
{comment: for each of the deltas we generate the boundary sums

and the telescoping compensating sums}
for i ∈ [1 . . . Length[RHS]] do
var = RHS [i][1]
insideDelta = RHS [i][2]
read from R the range of var in the form [q . . . B]
restOfRange = R\ [q . . . B]
if B = ∞ then
newRange = [q+1 . . .∞]

else
newRange = [q+1 . . . B+1]
boundarySums = boundarySums +

∑
restOfRange

insideDelta /. var → (B + 1)

end if
boundarySums = boundarySums -

∑
restOfRange

insideDelta /. var → q

newCompSums = CompensatingSums [ insideDelta /. var → (var - 1),
restOfRange /. var → (var - 1), var, 1] [2 . . . ]

compSums = compSums +
∑

newRange
newCompSums

end for
return FSum (boundarySums + compSums)

Using this function we can generate, for instance, the sums appearing on the right
hand side of (3.15). Note that the delta boundary sum resulting in the case j0 = N−3
is again a trivial sum.
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In[38]:= ProcessDeltas[Delta[j0, (N − j0 + 1)(N − 2)F [N,σ0, j0, j1, j2]], N, {{σ0, 0, Infinity},
{j0, 0, N − 4}, {j1, 0, N − 4− j0}, {j2, 0, j0}}]

Out[38]= FSum[−(−2 + N)(1 + N)F [N,σ0, 0, j1, 0], {{σ0, 0, Infinity}, {j1, 0,−4 + N}}] +

FSum[−(−2 +N)(1− j0 +N)F [N,σ0, j0, j1, j0], {{σ0, 0, Infinity}, {j0, 1,−3 +N}, {j1, 0,−4−
j0+N}}]+FSum[(−2+N)(1−j0+N)F [N,σ0, j0,−3−j0+N, j2], {{σ0, 0, Infinity}, {j0, 1,−3+

N}, {j2, 0,−1 + j0}}].

3.3.3 An outline of the method

The above sections introduced the types of sums, i.e., shift and telescoping compen-
sating sums as well as delta boundary sums, which will appear on the right hand side
of the inhomogeneous recurrences satisfied by summation problems of the form (3.2)
after summing over corresponding certificate recurrences (3.5).
A procedure to generate these inhomogeneous recurrences is implemented in the

package FSums. For example, the recurrence satisfied by the sum S ′(N, ε), which we
denote by simply SUM[N ], is returned by

In[39]:= finalRecS = InhomogenRec[certRecS, {{j0, 0,−4 +N}, {j1, 0,−4− j0 +N}}, N ]

Out[39]= (ε − 2N)NSUM[N ] + (3 − ε + N)(2 + ε + 2N)SUM[1 + N ] == FSum[(1 + j0 − N)(−ε +

2N)F [N, j0, 0], {{j0, 0,−4+N}}]+FSum[−2(ε−2N)F [N, j0,−3−j0 +N ], {{j0, 0,−4+N}}]+
FSum[(6− ε− ε2 + 2j1 + 12N + 4j1N)F [1 +N, 0, j1], {{j1, 0,−4 +N}}] + FSum[(ε− 2N)(2 +

j0−N)F [1 +N, j0, 0], {{j0, 0,−4 +N}}] + FSum[(3− ε+N)(2 + ε+ 2N)F [1 +N, j0,−3− j0 +

N ], {{j0, 0,−3 +N}}] + FSum[(ε+ ε2 + 2j0 + εj0 − 2N + 2j0N − 4N2)F [1 +N, j0,−3− j0 +

N ], {{j0, 1,−3 +N}}] + FSum[−((6 + 2ε+ 2j0 + εj0 + 6N − εN + 2j0N −2N2)F [1 +N, j0,−3−
j0 +N ]), {{j0, 0,−4 +N}}]

Note that we use the structure FSum to store sums with nonstandard boundary
conditions of the form (3.2). This data type contains two components, the summand
and a list structure for the summation range. The nested range is stored in the order
given in (3.2), starting with the infinite sums and ending with the sums with finite
summation bounds in the order of their dependence.
We have implemented this procedure using the short functions introduced in the

sections above. The procedure InhomogenRec takes as input a certificate recurrence,
the range of our summation problem and the free parameter N . The output will be
the corresponding inhomogeneous recurrence containing special instances of our initial
sum on its right hand side.
In the package FSums we use this procedure further, to compute recurrences for

all the single sums appearing on the right hand side of the inhomogeneous relation
finalRecS. These last inhomogeneous recurrences, delivered by Zeilberger’s algorithm
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Algorithm 5 InhomogenRec [ rec, R, N ]
LHS = rec[1]/.F[N + sh_, a_] → ShiftCompensatingSums[F[N, a], R, N, sh]
lhsSums = LHS /. SUM[_] → 0
LHS = LHS - lhsSums;
RHS = rec[2]/. Delta[_,0] → 0
deltaSums = ProcessDeltas[RHS,R ]
RHS = deltaSums - lhsSums;
return LHS == RHS

[78], can be viewed in special difference fields introduced by M. Karr [35] and it is
possible to find solutions of such recurrences [60] using the Sigma package. Moreover,
for these solutions we find alternative representations in terms of generalized harmonic
sums [70] using the package HarmonicSums.
By plugging in these answers into the recurrences from the previous level, Sigma

computes a solution to the initial recurrence satisfied by the double sum S ′(N, ε).
The solution is returned in the form of the first few coefficients of the Laurent series
expansion around the parameter ε > 0. However to obtain the initial sum we need to
compute one sore spot given by (3.13). Using procedures from the packages Sigma and
EvaluateMultiSums we have implemented this approach in the following function

In[40]:= ComputeFSum[termS, {N}, {{j0, 0,−4 + N}, {j1, 0,−4 − j0 + N}}, {4}, {ε, 0, 1},
Printing→Minimal,Splitting→ 0,SigmaLevel→ 0,Reorder→ False]//Timing

Out[40]= {67.5562Second, {9(−2 +N)(−1 +N))

2N2
,

3(24− 32N − 28N2 − 13N3 +N4)

8N3(2 +N)
+

9(3 +N)S[1, N ]

N(1 +N)(2 +N)
}}

Note that we use the notation from Section 1.2.6 for generalized harmonic sums, in
this basic case we have

S[1, N ] =
N∑
i=1

(−1)i

i
.

Hence, we obtained the following result for the sum from the Example 3.7

S(N, ε) =
9(−2 +N)(−1 +N))

2N2
+

3(24− 32N − 28N2 − 13N3 +N4)
8N3(2 +N)

ε

+
9(3 +N)ε

N(1 +N)(2 +N)

N∑
i=1

(−1)i

i
+O(ε2).

Note also that in order to use the procedure ComputeFSum from our package, we need
to first load all the components of the symbolic summation toolbox mentioned in the
introduction to this chapter. In the next sections we present the Sigma approach to
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Algorithm 6 ComputeFSum [ term, vars, R, {ε, start, end}, opt ]
N = vars[1] and read from R the list of summation variables sumVars
split R in Rσ ×Rj as in (3.8)
{in case we have no sum}
if sumVars = {} then
return the εstart till the εend coefficients of the Laurent series expansion for term
simplified by Sigma

end if
{in case we have only infinite sums}
if R = Rσ then
return the εstart till the εend coefficients of the Laurent series expansion for∑
Rσterm determined by EvaluateMultiSums

end if
{in case we have sums with finite bounds}
if Length[sumVars] = 1 then
rec = Zb[term, R, N]

else if Length[sumVars] > 1 then
if Reorder then
rec = UseMultiSum[ term, N, Reorder[ sumVars, R ] ]
rec = Rearrange[ rec, R ]

else
rec = UseMultiSum[ term, N, sumVars ]

end if
{let’s compute the sore spots}
determine the grade d of the recurrence rec given by Definition 3.4
if d > 0 then
soreSpots = SoreSpots[ term, Rj , d, N, Rσ ]
newRange = Rσ ×R′j
apply ComputeFSum [ spot, vars, Rspot, {ε, start, end}, opt ] to each sore spot

else
soreSpots =0
newRange = R

end if
rec= InhomogenRec[ rec, newRange, N, SplitRHSOpt]
rec= SubstituteSummand[ rec, term, N, sumVars ]
{compute the sums on the right hand side of rec}
rec = rec/.FSum[f_, r_] → ComputeFSum[ f, vars, r, {ε, start, end}, opt]

end if
use Sigma and EvaluateMultiSums to solve rec ⇒ the εstart till the εend coefficients
of the Laurent series expansion for the input sum
result = result + soreSpots
use HarmonicSums to find representations in terms of S-sums for result
return result
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3 Symbolic summation for Feynman parameter integrals

solving recurrences of this type and give more details about the procedure implemented
in ComputeFSum.
Using the simple Example 3.7, we also notice that the procedure of shifting the

recurrence instead of separating sore spots, described in Remark 3.6, will indeed lead
to a larger inhomogeneous part for the recurrence that we later need to solve.

In[41]:= InhomogenRec[ShiftRecurrence[certRecS, {N, 1}], {{j0, 0, N − 3},
{j1, 0, N − 3− j0}}, N ];

In[42]:= ShiftRecurrence[%, {N,−1}]

Out[42]= (ε − 2N)NSUM[N ] + (3 − ε + N)(2 + ε + 2N)SUM[1 + N ] == FSum[(1 + j0 − N)(−ε +

2N)F [N, j0, 0], {{j0, 0,−4+N}}]+FSum[−2(ε−2N)F [N, j0,−3−j0 +N ], {{j0, 0,−4+N}}]+
FSum[(ε− 2N)NF [N, j0,−3− j0 + N ], {{j0, 0,−3 + N}}] + FSum[(6− ε− ε2 + 2j1 + 12N +

4j1N)F [1+N, 0, j1], {{j1, 0,−4+N}}]+FSum[(ε−2N)(2+j0−N)F [1+N, j0, 0], {{j0, 0,−4+

N}}] + FSum[(3− ε+N)(2 + ε+ 2N)F [1 +N, j0,−3− j0 +N ], {{j0, 0,−2 +N}}] + FSum[(ε+

ε2 + 2j0 + εj0 − 2N + 2j0N − 4N2)F [1 +N, j0,−3− j0 +N ], {{j0, 1,−3 +N}}] + FSum[(−6−
2ε−2j0−εj0−6N+εN−2j0N+2N2)F [1+N, j0,−3−j0 +N ], {{j0, 0,−4+N}}]+FSum[(3−
ε+N)(2 + ε+ 2N)F [1 +N, j0,−2− j0 +N ], {{j0, 0,−2 +N}}]

In[43]:= Length[%[[2]]]− Length[finalRecS[[2]]]

Out[43]= 2.

where the last command returns the difference between the number of sums in the
inhomogeneous parts of the recurrences.

3.4 The Sigma package - solving recurrences and more

As presented above, the package FSums uses several procedures from C. Schneider’s
packages Sigma and EvaluateMultiSums to solve the inhomogeneous recurrences for
the sums (3.2). We will focus here on the Sigma package [61] which combines several
different symbolic summation approaches to automatically simplify nested sums and
products.
Based on Karr’s algorithm [35], the summation analogue of the Risch integration

algorithm [55], the Sigma package contains further application-oriented extensions [59–
62]. In this section we limit ourselves to the very basic concepts involved in this
method, as described by Karr in [35], in order to specify the class of expressions that
can be handled by our package FSums which relies on Sigma.
The main idea behind Karr’s method is trying to find an antidifference for a given

summand which is similar to how integrals can be solved by finding a primitive func-
tion. This strategy of algorithmically simplifying expressions refers to the elimination
of summation and product quantifiers, if feasible, or else reduction of the nested depth,
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3.4 The Sigma package - solving recurrences and more

as remarked by C. Schneider in [62].
Suppose we’re looking for a simpler representation, a closed form solution, g(n) of

the given a sum

g(n) =
n∑
i=a

f(i).

We can rewrite this to get an expression of g(n) in terms of the summand f(n),

∆g(n) = g(n+ 1)− g(n) = f(n). (3.16)

Once we know such a function g satisfying the equality above, using the telescoping
property, we obtain the value of the sum by evaluating g at the end points of the sum,
in a similar fashion to evaluating a definite integral after finding a primitive function

n∑
i=a

f(i) = g(n+ 1)− g(a).

Karr’s strategy for finding the antidifference g works by first constructing an algebraic
domain, a difference field to model the summand f and the shift behavior associated
to the given sum structure. Hence, the starting point of this construction is finding a
shift function which models the given structure and determining a field of constants,
denoted here by K, containing elements that remain unchanged under this shift.

Definition 3.8. [23] A difference field is a field F together with an automorphism σ
of F . The constant field K ⊂ F is the fixed field of σ.

The map σ encapsulates the action of the shift. For example, given the sum
∑n

i=1 i,
we take F = Q(n) with constant field Q and σ(n) = n+1. In order to simplify a given
sum, we need to find a g satisfying equation (3.16). In the difference field setting, this
equation can be written as a first order linear difference equation,

σ(g)− g = f. (3.17)

Going back to our simple example, we have f = i(n) = n, where i is considered as a
polynomial function on F . One can easily see that g = n(n−1)

2 satisfies the equation
above. Then our sum

∑n
i=1 i is equal to g(n+ 1)− g(1) = (n+1)n

2 .
In general the summand f contains nested indefinite sums and products. In this

case, we construct the difference field recursively, extending the domain by a new
indeterminate to represent the current sum or product at each step. In [35], we find
algorithms to solve equation (3.17) over certain towers of difference fields. These towers
can be constructed by extending the given difference fields in one of two ways at each
step.
Given a difference field F, σ, both extensions add a new transcendental indetermi-

nate, say t, such that σ(t) = αt + β for some α, β ∈ F . They also require that the
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3 Symbolic summation for Feynman parameter integrals

constant field is not extended by this addition. Extensions with these properties are
called first order linear by Karr [35, Definition 5]. We further divide first order linear
extensions into two categories. If there is an element w ∈ F (t) such that σ(w) = aw
for some a ∈ F , then the extension is called homogeneous. If there is no such element,
we call the extension inhomogeneous. Homogeneous first order linear extensions are
called Π extensions. Whereas Σ extensions are a special case of inhomogeneous first
order linear extensions.
When constructing a tower, at each step the properties of a first order linear ex-

tension have to be verified. To accomplish this we first check if the extension is inho-
mogeneous. If this is the case, it will also be a first order linear extension which was
proven in [35, Theorem 3]. In order to check if a homogeneous extension is first order
linear, or if an inhomogeneous extension is a Σ extension, we verify a more technical
condition described in Theorem 2 and Section 2.6 of [35].
In case they cannot already be represented by an element of the field at that stage,

nested sums over the summand f are introduced as new Σ extensions in the tower of
difference fields. For example, in order to extend the difference field F = Q(n) where
σ(n) = n + 1 with the harmonic sums Hn =

∑n
i=1

1
n , we construct F (h) = Q(n, h)

such that σ(h) = h + 1
n+1 . The image of h under σ is determined by shifting the

harmonic sums,

σ(
n∑
i=1

1
i
) =

n+1∑
i=1

1
i

= (
n∑
i=1

1
i
) +

1
n+ 1

.

Products in the function f are represented by Π extensions. For example, to add
the expression 2n, which can be written in product form

∏n
i=1 2, to a difference field

F = Q(n) where σ(n) = n+1, we construct F (t) = Q(n, t) with σ(t) = 2t. The image
of σ(t) is determined by the shift behavior of 2n. Namely, σ(2n) = 2n+1 = 2 · 2n.
For a small but nontrivial example of this construction, we try to find a simple

formula for the double sum

n∑
i=1

H2
n =

n∑
i=1

 i∑
j=1

1
j

2

.

The summand f is H2
n in this case. To represent f , we construct the difference field

F = Q(n, h) with constant field Q, σ(n) = n+ 1 and σ(h) = 1 + 1
n+1 as above. Now

we need to solve
σ(g)− g = h2

for g ∈ F . This can be accomplished by Karr’s algorithm from [35], or a simplified
version provided in [60]. We get the solution

g = h2n− 2hn− h+ 2n,
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which represents H2
nn− 2Hnn−Hn + 2n. Now we only need to evaluate g at the end

points of the given sum,

n∑
i=1

H2
i = g(n+ 1)− g(1) = H2

n(n+ 1)− 2Hnn−Hn + 2n.

Note that Karr’s approach to symbolic summation was extended by C. Schneider in
many new directions [57, 58, 62] and the powerful package Sigma [61] is already used
to solve large summation problems related to Feynman parameter integrals [11,13,44].
The computations described in this chapter rely on Sigma for solving the class of
inhomogeneous recurrence relations set up during the procedure ComputeFSum.
Using generalizations of algorithms for solving difference equations [4,52,60], Sigma

finds solutions for the recurrences satisfied by our class of summation problems (3.2).
Combining these solutions with initial values computed by the EvaluateMultiSums
package, we find an alternative representation for the input sum. These results can be
rewritten in terms of harmonic sums [16,70], using the package HarmonicSums [1].

3.5 Examples and variations on this theme

In this section we present the options Reorder, Splitting, and SigmaLevel which
we have implemented to optimize the function ComputeFSum. We will also discuss the
following 3-fold sum.

Example 3.9.

T (ε,N) :=
N−2∑
j0=1

j0∑
j1=0

j1+1∑
j2=0

(−1)j0−j1+j2+N

(
j0
j1

)(
j1 + 1
j2

)

×
Γ(−j0 + j1 +N + 1)Γ(−j0 + j2 +N)

(
− ε

2

)
j2

(
N − ε

2

)
−j0

Γ(−j0 + j1 +N + 2)(N − ε)j2−j0
(
ε
2 +N + 1

)
j2−j0

where N ≥ 3 is the Mellin moment and ε > 0 the dimension regularization parameter.

Recall from Section 2.1 that the certificate recurrence was obtained by sucessively
dividing a k-free or a non-k-free recurrence by the ∆-operators of all the summation
variables. The last remainder in this chain of division being the principal part which
will become the left hand side of the corresponding certificate recurrence (2.4). Note
also that, the principal part of the certificate recurrence will be independent of the
order in which we choose to perform the divisions. Only the quotients, the contents of
the ∆-parts, will differ under such a formal permutation of the summation variables.
Since the finite summation bounds in the ranges of the problems (3.2) originate from

successive applications of the binomial theorem, the inner summation variables will
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3 Symbolic summation for Feynman parameter integrals

be less spread in factors of the summand. Therefore we arrive faster at the principal
part if we divide by the ∆-operators of the inner variables first and move to the outer
sums. Experiments showed that for faster results the σ variables should be placed at
the end of this chain. The option Reorder for the function ComputeFSum will reorder
the variables for this purpose. Afterwards, by using the procedure Rearrange we
reverse the variable permutation back such that F[N, σ, j] denotes the summand in
any computed certificate recurrence.
Another shortcut we use is the SigmaLevel option. As we explained above, by

summing over the computed certificate recurrence (3.5) satisfied by a sum of the form
(3.2), one obtains an inhomogeneous recurrence. The right hand side of this recur-
rence will contain special instances of the original multi-sum of lower nested depth.
Applying the same method on these new sums recursively, we get new recurrences.
This procedure sets up a tree of recurrences with leaves made of relations with only
hypergeometric terms on their right hand sides which we can solve using Sigma.
Even when we start with only a relatively small sum, the tree of recurrences will con-

tain many branches that need to be pursued. In the case of Example 3.9, Wegschaider’s
algorithm solves an equation system of size 302× 83 to determine a certificate recur-
rence of grade 2 and order 3 with respect to N . This leads to a number of 6 sore spots
which needs to be considered separately. Moreover, after summing over the certificate
recurrence, its inhomogeneous side will contain 87 double and single sums which need
to be computed.
In this context, we have introduced the SigmaLevel option which cuts some branches

of the recurrences tree and passes them over to Sigma. We have successfully used this
idea for double sums on the right hand side of recurrence for many triple sums. For
our running example we have

In[44]:= ComputeFSum[termT, {N}, {{j0, 1,−2+N}, {j1, 0, j0}, {j2, 0, 1+j1}}, {4}, {ε, 0, 1},
Printing→Minimal,Splitting→ 0,SigmaLevel→ 2,Reorder→ True]//Timing

Out[44]= {9574.13Second, {N !
1− (−1)N

N(1 +N)2
, N !

 
2 + 2N − 5N2 − 2N3

2N2(1 +N)3
+

3(−1)N

2(1 +N)3
+

2

1 +N

NX
i=1

(−1)i

i2

−S[2, N ]

1 +N

«
}}.

For the case of more then 4 summation quantifiers we have introduced the Splitting
option which allows to split off some sums from the input problem (3.2). We regard the
last split summation variable as the free parameter, in which we compute recurrences,
for the remaining inner kernel. After finding a close form representation for these inner
sums by setting up the tree of recurrences and solving them, as described above, we
will add the split sum on the top of the result by using the Sigma package. Note also
that all the optimization techniques we describe in this section lay more weight on the
usage of the efficient package Sigma.
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3.5 Examples and variations on this theme

Summary

The collaboration between RISC and DESY, lead by C. Schneider, represents a break-
through in applications of symbolic summation tools to Feynman integral calculus
[11,13,44]. We contribute in this endeavor by applying WZ-Fasenmyer methods [25,76]
to sum representations for a class of Feynman parameter integrals described in [15].
The summation problems we consider are highly nested definite sums with non-

standard boundary conditions which satisfy inhomogeneous recurrences determined
by summing over the certificate recurrences returned by Wegschaider’s algorithm [72].
After constructing the range for which we can sum over a certificate recurrence

without stepping out of the domain where the summand is well defined, we set up
the inhomogeneous side of the recurrence relation satisfied by the multisum. The
procedures described in sections 3.3 and 3.2 are also implemented in the Mathematica
package FSums.
Our implementation in FSums became part of a symbolic summation toolbox for the

computation of Feynman parameter integrals which also contains the packages Sigma,
EvaluateMultiSums, HarmonicNumbers, MultiSum and the Paule-Schorn implemen-
tation of Zeilberger’s algorithm.
Moreover, the question of setting up inhomogeneous recurrences for sums with non-

standard boundary conditions is interesting in itself. For instance using the package
FSums we can easily find the inhomogeneous recurrence for a double sum with finite
bounds which is needed in [6, Section 4].
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4 Recurrences for Mellin-Barnes
integrals

This chapter presents how WZ-Fasenmyer summation methods [25,76] can be used to
determine recurrences for multiple contour integrals of Barnes’ type, where in analogy
to the summation case, the integrands need to be hypergeometric in all integration
variables and contain free hypergeometric parameters.
As explained in section 4.2, we determine these recurrences by successively inte-

grating the certificate recurrence (2.4) over the Barnes paths of integration Cκj for
1 ≤ j ≤ r and analyzing the behavior of the contour integrals over ∆-parts on the left
hand side. By a different choice of the integration contours, this method will lead to
homogeneous or inhomogeneous recurrences satisfied by the integrals.
These ideas go back to a question stated in [9, Section7] which presents an approach

by W. Zudilin for the recurrences satisfied by a class of Ising integrals. We answer this
question in section 4.4 of this chapter.
We start by introducing the Mellin transform and its inverse as well as general-

ized Mellin transforms which can be constructed for polynomial functions. In section
4.3 we prove entries involving definite integrals from the Gradshteyn-Ryzhik table of
integrals [32]. By using the Mellin transform method, we find Mellin-Barnes inte-
gral representations for these problems and afterwards Wegschaider’s algorithm [72]
delivers recurrences satisfied by both sides of the identities.

4.1 The Mellin transform and its inverse

In this introductory section we give the definition of the Mellin transform and some
of its elementary properties. We also discuss the inversion theorem, the Parseval
formula and the Mellin transform method which we will later combine with algorithmic
tools like WZ-summation techniques [76]. Chapters dedicated to this classic integral
transform and its applications can be found in [12,24,34,47,63,77].
Let us first recall that a function is said to be locally integrable on (0,∞) if and

only if it is integrable on all closed subintervals of (0,∞). The Mellin transform of a
locally integrable function f : (0,∞)→ C is defined by

f̃(z) =
∫ ∞

0
tz−1f(t)dt =: M [f ; z] (4.1)
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4 Recurrences for Mellin-Barnes integrals

wherever the integral converges. We first note that it can be expressed as a bilateral
Laplace transform [34, Section 10.11] through the substitution t = e−u, i.e.,

M [f ; z] =

∞∫
−∞

e−zuf(e−u)du (4.2)

from which we know that it converges absolutely and it is analytic on the infinite strip
α < Re(z) < β where

α = inf
{
a
∣∣ f(t) = O(t−a) as t→ 0+

}
β = sup

{
b
∣∣∣ f(t) = O(t−b) as t→ +∞

}
. (4.3)

Our main tool will be the inversion formula, which also follows directly from that for
the two-sided Laplace transform,

f(t) =
1

2πi

∫ c+i∞

c−i∞
t−z f̃(z)dz (4.4)

and uniquely determines f(t) from f̃(z) at all points t ≥ 0 where f(t) is continuous.
The contour of integration is a vertical line in the z-plane and must be placed in the
strip of analyticity α < c < β, whose boundaries are determined by the asymptotic
behaviour of f at the limits of its domain of definition.

Remark 4.1. Using (4.2) and the Riemann-Lebesgue lemma [8, Section 15-6], one can
show that for all α ≤ x ≤ β we have

lim
y→±∞

M [f, x+ iy] = 0.

In other words,M [f, z] tends to zero as z goes to infinity along any vertical line within
the strip of absolute convergence.

To introduce our approach to identities involving definite integrals, we prove the
main property of the Mellin convolution, i.e.,∫ ∞

0
g(xt)h(t)dt =

1
2πi

∫ δ+i∞

δ−i∞
x−z g̃(z)h̃(1− z)dz, (4.5)

where g, h : (0,∞) → C are defined such that the left hand side integral exists and
the Mellin transforms g̃(z) and h̃(1− z) have a common domain of analyticity with δ
lying in this common domain. Note that the special case x = 1 of (4.5) is called the
Parseval formula for the Mellin transform [47, Section 3.1].
To prove (4.5), we start with the Mellin convolution on the left-hand side and use

the inversion formula to insert g̃(z). Next we reverse the order of integration, using
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the absolute convergence of the double integral and applying Fubini’s theorem. Hence,
we have ∫ ∞

0
g(xt)h(t)dt =

1
2πi

∫ δ+i∞

δ−i∞
x−z g̃(z)

(∫ ∞
0

t−zh(t)dt
)
dz

and since the inner definite integral is precisely h̃(1− z) the proof is complete.
This simple proof strategy is based on the Mellin transform method for integra-

tion problems, mostly used to obtain equivalent Mellin-Barnes integral representations
which can be rewritten as sums of residues at certain poles of the integrands. These
sums lead to asymptotic expansions for the original integrals.
In this case, if the Mellin transforms g̃(z) and h̃(1−z) can be analytically continued

to meromorphic functions in a left half plane and the contour of integration can be
shifted to Re z = d < δ, we have∫ ∞

0
g(xt)h(t)dt =

∑
d<Re z<δ

Res[x−z g̃(z)h̃(1− z)] + E(x)

where E(x) denotes the integral over the shifted contour

E(x) =
1

2πi

∫ d+i∞

d−i∞
x−z g̃(z)h̃(1− z)dz.

The resulting sum of residues yields the asymptotic expansion of the integral for small
values of x. In a similar way, by shifting the contour to the right, we can construct
the asymptotic expansion for x→ +∞.
We use the Mellin transform technique to prove identities from the table of integrals

[32]. For this purpose we only need the definition of the reciprocal pair (4.1) and (4.4).
The proof of property (4.5) serves merely an introductory purpose here.
In Section 4.3, we rewrite the definite integrals appearing in entries from the ta-

ble [32] by inserting a Mellin-Barnes integral representation of type (4.4) for a factor
of the integrand using the method introduced above. This is done in the hope that
after interchanging the order of integration, the inner integral becomes an easily com-
putable definite integral and we end up with a contour integral of Barnes’ type over a
hypergeometric integrand.
For example, when proving the identity [32, 3.383.1]∫ u

0
xν−1(u− x)µ−1eβxdx = B(µ, ν)uµ+ν−1

1F1 (ν; ν + µ;βu) , [Reµ > 0, Re ν > 0]

(4.6)
we rewrite the left-hand side by plugging in the Mellin-Barnes integral representation

eβx =
1

2πi

∫ δ+i∞

δ−i∞

1
(−β)z

Γ(z)x−zdz, δ > 0.
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This representation of the exponential function is to be found in [46] or can be obtained
by observing that its Mellin transform is given by ( [7], 1.1.18)

Γ(z) =
∫ ∞

0
xz−1e−xdx, Re z > 0 (4.7)

and using the inversion formula (4.4) afterwards.
Hence, the left-hand side of (4.6) becomes∫ u

0
xν−1(u− x)µ−1eβxdx =

1
2πi

∫ δ+i∞

δ−i∞

1
(−β)z

Γ(z)
(∫ u

0
xν−z−1(u− x)µ−1dx

)
dz.

After several changes of variables, the inner definite integral is given by∫ u

0
xν−z−1(u− x)µ−1dx = uν+µ−1−zB(ν − z, µ),

where B denotes the beta function. The identity (4.6) is equivalent to

Γ(ν + µ)
2πiΓ(ν)

∫ δ+i∞

δ−i∞

Γ(ν − z)
Γ(ν + µ− z)

Γ(z)(−uβ)−zdz = 1F1 (ν; ν + µ;βu) ,

which is the Barnes’ integral representation for the confluent hypergeometric function
1F1; see for instance section 4.2 in [7]. Note that identity (4.6) constitutes the base
case for a proof by induction in n of the table entry [32, 3.478.3].
Proving more involved identities from [32] via the Mellin transform method requires

inserting the Mellin-Barnes type integral representations for two or more factors of the
integrand. In this case, we will end up with nested contour integrals over hypergeomet-
ric terms and a sum representation for such integrals is not always easily determined.
Examples of such situations are included in section 4.3.
In this context, Mellin-Barnes integrals [34,47] are complex contour integrals with

integrands involving products of gamma functions and paths of integration, usually,
running along the imaginary axis and curving, if necessary, to put the poles of Γ(a+s)
functions to the left and those of Γ(b− s) functions to the right of the path, where z
denotes the integration variable.
A simple example, for a Mellin-Barnes integral is

Ia :=

i∞∫
−i∞

Γ(a+ s)Γ(−s)ysds

where a is neither zero nor a negative integer and possible contours of integration
along the imaginary axis, separating ascending from descending chains of poles, are
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Figure 4.1: Integration contours for Ia

Λm

(a)

Λm

(b)

presented in Figure 4.1. Moreover, by integrating over the rectangular curves Λm,
with corners ±im, m+ 1

2 ± im, for large integers m, we can prove that

1
2πi

Ia = Γ(a)(1 + y)−a,

for |y| < 1 and | arg(y)| < π. To show this result, we use Cauchy’s residue theorem
to express the integrals over the closed curves Λm as the sums of residues at the first
poles of the ascending chain

1
2πi

∫
Λm

Γ(a+ s)Γ(−s)ysds = −Γ(a)
m∑
n=0

(a)n
n!

(−y)n.

Next we investigate the asymptotic properties of the integrand using Stirling’s formula
[74, Section 13.6],

log Γ(z + a) = (z + a− 1
2

)Log z − z +O(1) (4.8)

which holds for large |z| in the region where |arg(z)| < π and |arg(z + a)| < π.
Denoting the integrand of Ia by ψa,y(s), we have for |s| → ∞

ψa,y(s) = O
(
|y|Re(s)e−| Ims|(π−arg(y))|s|Re(a)−1

)
.

This asympotic behaviour implies that the integrals to the right of the contour Λm,
as well as along the top and the bottom parts to tend to zero as m → ∞. Hence we
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4 Recurrences for Mellin-Barnes integrals

have the existence of Ia as an improper integral given by

lim
m→+∞

∫
Λm

ψa,y(s)ds = Ia.

Thus, we have proved the Mellin-Barnes integral representation for a 1F0 hyper-
geometric series. In the following sections we will use Barnes integrals of this form
for other generalized hypergeometric series which can be proved using a similar argu-
ment [54, Theorem 35] or found in tables of Mellin transforms like [46].
Section 4.2 describes how WZ-Fasenmayer summation methods [76] can be used to

compute homogeneous and inhomogeneous recurrences not only for nested sums but
also for multiple Mellin-Barnes integrals over hypergeometric terms. This algorithmic
aspect adds more power to the Mellin transform method and we are able to prove
more involved entries from the table.

4.1.1 Analytic continuation of Mellin transforms

For the functions considered so far, the Mellin transform existed as defined in (4.1)
and the contour of integration for its Mellin-Barnes integral representation passing
through c ∈ R lay in the strip α < c < β defined by (4.3). In the case of a polynomial
function f(x) = (1 − x)n we have α = 0 and β = −n which implies that a strip of
analyticity and the defining integral for the Mellin transform (4.1) do not exist.
An extension of the Mellin transform to deal with this problem is presented in [12,

Section 4.3]. The procedure is based on the decomposition of the input function f(x)
into two functions defined on disjoint intervals such that f(x) = f1(x) + f2(x). We
can choose an arbitrary point and truncate f in the following way

f1(x) =
{
f(x), x ∈ [0, 1)
0, x ∈ [1,∞)

, f2(x) =
{

0, x ∈ [0, 1)
f(x), x ∈ [1,∞)

.

Moreover, the Mellin transforms of these new functions are analytic in Re(z) > α and
in Re(z) < β, respectively, where α, β are defined by (4.3). In the simple case when
α < β, we have

M [f ; z] = M [f1; z] +M [f2; z].

Using the work of Handelsman and Lew, as presented in [77, Section 3.4], we extend
this definition to the case α > β by imposing additional asymptotic conditions such
that eitherM [f1; z] orM [f2; z] can be continued analytically to meromorphic functions
on the entire z-plane. Indeed for the function f(x) = (1 − x)n with Re(n) > 0, we
have

f̃(z) = Γ(n+ 1)
[

Γ(z)
Γ(n+ z + 1)

+ (−1)n
Γ(−n− z)
Γ(1− z)

]
, (4.9)

for all z ∈ C except at its simple poles. The Parseval formula and other considerations
for generalized Mellin transforms of this type is presented in [12, Section 4.5].
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4.2 From summation to integration

Remark 4.2. From our algorithmic point of view, the Mellin transform (4.9) is particu-
larly interesting as it is the sum of two proper hypergeometric terms which are shadows
of each other [75, Section 4]. Therefore, we find the same certificate recurrence for both
terms which is also satisfied by their sum.

From (4.9) and Euler’s integral representation [7, Theorem 2.2.1] we determine the
Barnes’ type integral form of the terminating 2F1

2F1

(
−n, b
c

;x
)

=
Γ(c)Γ(n+ 1)

2πiΓ(b)

[∫ δ+i∞

δ−i∞

Γ(z)
Γ(n+ z + 1)

Γ(b− z)
Γ(c− z)

x−zdz

+(−1)n
∫ η+i∞

η−i∞

Γ(−n− z)
Γ(1− z)

Γ(b− z)
Γ(c− z)

x−zdz

]
(4.10)

where Re(c) > Re(b) > 0, Re(b) > δ > 0 and η < −Re(n).

4.2 From summation to integration

In this section we will show how Wegschaider’s algorithm [72] can be used to determine
recurrences for multiple contour integrals of Barnes’ type

Int (µ) =
∫
Cκ1

. . .

∫
Cκr
F (µ, κ1, . . . , κr, α) dκ1 . . . dκr, (4.11)

where the integrands F (µ, κ, α) are proper hypergeometric in all integer variables µi
from µ = (µ1, . . . , µp) and in all integration variables κj from κ = (κ1, . . . , κr) ∈ Cr,
while α = (α1, . . . , αl) ∈ Cl are additional parameters.
As in the case of the summation problem (2.1), the fundamental theorem of hy-

pergeometric summation, Theorem 2.7, stated by Wilf and Zeilberger in [76] proves
the existence of non-trivial certificate recurrences of the form (2.4) for the function
F (µ, κ, α). Using WZ summation methods, Wegschaider’s algorithm [72] delivers re-
currences of the form (2.4) for the hypergeometric integrand from (4.11). As remarked
in Section 2.1, the coefficients on the left hand side of this recurrence are free of all
integration variables κ = (κ1, . . . , κr).
Although discrete functions are our main interest, one can also evaluate the function
F (µ, κ, α) for complex values of the variables µi and κj for all 1 ≤ i ≤ p and 1 ≤
j ≤ r except at certain points. In our case, the singularities of the numerator gamma
functions need to be excluded from the evaluation domain. The function F (µ, κ, α) is
then continuous on its evaluation domain and by taking limits it can be shown that
the computed recurrences (2.4) hold in Cp+r+l.
Therefore, after successively integrating over the Barnes paths of integration Cκj for

1 ≤ j ≤ r, (2.4) leads, in some cases, to a homogeneous recurrence for the integration
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4 Recurrences for Mellin-Barnes integrals

problem (4.11), i.e., ∑
m∈S

am (µ) Int (µ+m) = 0. (4.12)

However, again in analogy to the summation case, after integrating over the contours
of integration Cκj for 1 ≤ j ≤ r, it is not clear in general that we obtain a homogeneous
equation of the type (4.12). Consequently, one needs to analyze the behavior of the
contour integrals over the left hand side of (2.4).
For this purpose, we study the following integration problems:

Ij :=
∫
Cκj

∆κjF (µ, κ) dκj =
∫
C′κj

F (µ, κ, α) dκj −
∫
Cκj
F (µ, κ, α) dκj , (4.13)

where the Barnes path Cκj runs vertically over (cj − i∞, cj + i∞) while C′κj denotes
the shifted path (1 + cj − i∞, 1 + cj + i∞) for all 1 ≤ j ≤ r.

For any 1 ≤ j ≤ r, consider now the contour integral INj over a rectangle with
vertices at the points cj − iN , cj + iN , 1 + cj + iN and 1 + cj − iN with N ∈ N; i.e.,

INj =

1+cj+iN∫
1+cj−iN

F (µ, κ, α) dκj +

cj+iN∫
1+cj+iN

F (µ, κ, α) dκj

+

cj−iN∫
cj+iN

F (µ, κ, α) dκj +

1+cj−iN∫
cj−iN

F (µ, κ, α) dκj . (4.14)

If in any such rectangular region of integration, we have the asymptotic behavior

F (µ, κ) = O
(
|κj |−d e−c|κj |

)
as |κj | → ∞ with c ≥ 0, d > 0, (4.15)

then INj → Ij asN →∞. Since the function F (µ, κ, α) is dominated by an exponential
with negative exponent, it suffices to analyze the integrals (4.13) instead of the integrals
over the right hand side of (2.7).
On the other hand, we can calculate the integrals (4.14) by considering the residues

of the function F (µ, κ, α) at the poles lying inside the closed rectangular contours.
Therefore, if for all 1 ≤ j ≤ r, the Barnes paths of integration Cκj can be chosen such
that the function F (µ, κ, α) has no poles inside these rectangular regions, then the
integrals (4.13) will be zero. This is why conditions (4.37) are imposed on the integral
representation of Cn,k for n, k ≥ 1.
Under these restrictions, we obtain from the certificate recurrence (2.4) a homoge-

neous recurrence (4.12) for the multiple Barnes’ type integral (4.11). Note that by
a different choice of the integration contours this method will lead to inhomogeneous
recurrences for multiple Barnes integrals which satisfy the asymptotic condition (4.15).
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4.2 From summation to integration

Let us consider the entry [32, 6.512.3] as a simple example∫ ∞
0

Jν(αx)Jν−1(βx)dx =
βν−1

αν
, [β < α] (4.16)

where Jν denotes the Bessel function of the first kind of order ν; see for instance [7,
4.5.2]. The Mellin-Barnes integral representation of Jν is given by [46, 10.1]

Jν(αx) =
1

4πi

∫ δ+i∞

δ−i∞

Γ
(
ν+z

2

)
Γ
(
1 + ν−z

2

) (αx
2

)−z
. (4.17)

Using the Mellin transform method presented in Section 4.1, we obtain a simple
Mellin-Barnes integral representation for the left hand side of (4.16)∫ ∞

0
Jν(αx)Jν−1(βx)dx =

1
2πiβ

∫ δ+i∞

δ−i∞

(
β

α

)z dz

ν − z
, (4.18)

where −ν < δ < 3
2 . We denote the integral on the right hand side of (4.18) by

Int[ν] =
∫
F [ν, z]dz (4.19)

and observe that F [ν, z] = O
(
|z|−1 e|z| log

β
α

)
.

Once we input the integrand

In[45]:= F [ν_, z_] :=
1

2πiβ(ν − z)

„
β

α

«z
we compute a certificate recurrence in the integer parameter ν using either the Math-
ematica implementation of Zeilberger’s algorithm [51] or the command

In[46]:= FindRecurrence [F [ν, z], ν, z, 1] ;

from the package MultiSum and shift this recurrence accordingly:
In[47]:= ShiftRecurrence [%[[1]], {ν, 1}, {z, 1}]

Out[47]= βF [ν, z]− αF [ν + 1, z] = ∆z [αF [ν + 1, z]] .

Here we need to think about the contour of integration. Since δ can be chosen such
that the rectangular regions described above do not contain the pole of the function
F [ν+1, z], we find the homogeneous recurrence satisfied by the left hand side of (4.16)
as the output of the following command:

In[48]:= rec1 = SumCertificate [%] /.SUM→ INT

Out[48]= βINT[ν]− αINT[ν + 1] = 0.
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4 Recurrences for Mellin-Barnes integrals

In this simple case we can either read off the solution of the recurrence relation or,
since the right side of the identity (4.16) is given, we also can check whether it satisfies
the recurrence above:

In[49]:= RHS[ν_] :=
βν−1

αν
In[50]:= CheckRecurrence [rec1,RHS[ν]]

Out[50]= True.

The initial value that needs to be checked is a known property of the Bessel function.
A similar approach works for the other two cases given in the table for this identity.

4.3 Back to proving special functions identities

Considerable work on proving and verifying the entries in the Table of Integrals, Series
and Products [32] is being done by Victor Moll, et.al., in a series of articles, the latest
being [19,43,45]. Moreover, an introduction to the art of evaluating definite integrals
using a variety of techniques can be found in [17].
In joint work with K. Kohl [38], we contributed with an approach based on the

Mellin transform method for rewriting definite integration problems in terms of nested
Mellin-Barnes integrals. Viewing the identities in [32] from the perspective of the
Mellin transform method seems natural, especially since most entries from the table
of Mellin transforms [46] are also found there. In this section we present some short
examples illustrating our approach.

4.3.1 A simple example

To prove the identity [32, 7.245.1]

2π∫
0

P2m+1(cos θ) cos θdθ =
π

24m+1

(
2m
m

)(
2m+ 2
m+ 1

)
(4.20)

we use the change of variable sin θ =: x and the following representation for the
Legendre function of the first kind

Pν(z) = 2F1

(
−ν

2 ,
ν+1

2
1

; 1− z2

)
.

Since, in our case, ν = 2m + 1 with m ∈ N by converting the 2F1 to a Barnes
integral, reversing the order of integration and evaluating the innermost integral, we

66



4.3 Back to proving special functions identities

rewrite (4.20) as

1
2πiΓ(−m− 1

2)Γ(m+ 1)

∫ δ+i∞

δ−i∞

Γ(−m− 1
2 + s)Γ(m+ 1 + s)Γ(−s)

Γ(1 + s)
(−1)s

(2s+ 1)
ds

(4.21)

=
π

24m+3

(
2m
m

)(
2m+ 2
m+ 1

)
.

This path of integration is curved to put the poles of the gamma functions Γ(−m− 1
2+s)

and Γ(m+ 1 + s) to the left of the path and the poles of Γ(−s) to the right.
Using Wegschaider’s algorithm [72], we find a recurrence for the integrand:

In[51]:= F [m_, s_] :=
Γ(−m− 1/2 + s)Γ(m+ 1 + s)Γ(−s)(−1)s

2πiΓ(−m− 1/2)Γ(m+ 1)Γ(1 + s)(2s+ 1)
In[52]:= FindRecurrence [F [m, s],m, {s}, 1]

In[53]:= rec1 = ShiftRecurrence [%[[1]], {m, 1}, {s, 1}]

Out[53]= 2(1 +m)(1 + 2m)(3 + 2m)(9 + 4m)F [m, s] + 3(7 + 4m)(11 + 14m+ 4m2)F [1 +m, s]

− 4(2 +m)(3 +m)(5 + 2m)(5 + 4m)F [2 +m, s] = ∆s[2(1 + 2m)(3 + 2m)(9 + 4m)sF [m, s]

− 2(300 + 610m+ 446m2 + 140m3 + 16m4 + 297s+ 510ms+ 276m2s+ 48m3s)F [1 +m, s]

+ 4(2 +m)(3 +m)(5 + 2m)(5 + 4m)F [2 +m, s]]

To check the asymptotic condition we use Stirling’s formula (4.8). Since |eiπy| = 1
for any real y, we denote with PI the pure imaginary terms and we obtain

logF [m, s] = −5
2

log |s|+ (arg(−s)− arg(s)− π) Ims+ PI +O(1).

Here we distinguish two cases, either Im(s) > 0 or Im(s) < 0, and in either of these
cases the function F [m, s] is of the form (4.15).
Integrating over the certificate recurrence with a suitable contour leads to a zero

integral over the ∆s part and we obtain a homogeneous recurrence for the left hand
side of (4.21):

In[54]:= rec2 = SumCertificate[rec1]/.SUM→ INT

Out[54]= 2(1 +m)(1 + 2m)(3 + 2m)(9 + 4m)INT[m] + 3(7 + 4m)(11 + 14m+ 4m2)INT[1 +m]− 4(2 +

m)(3 +m)(5 + 2m)(5 + 4m)INT[2 +m] = 0

Now we check that the right hand side of (4.21) also satisfies the recurrence:

In[55]:= RHS[m_] :=
π

24m+3

 
2m

m

! 
2m+ 2

m+ 1

!
In[56]:= CheckRecurrence[rec2, RHS[m]]

Out[56]= True.
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4 Recurrences for Mellin-Barnes integrals

At last, we only need to show that identity (4.20) holds for two initial values m = 0
and m = 1, and this is done by looking up the appropriate Legendre functions.

4.3.2 Examples involving orthogonal polynomials

Next we consider two more examples from the table [32] involving Gegenbauer poly-
nomials. We start with identity 7.318

1∫
0

x2ν(1− x2)σ−1Cνn
(
1− x2y

)
dx =

Γ(2ν + n)Γ
(
ν + 1

2

)
Γ(σ)

2Γ(2ν)Γ
(
n+ ν + σ + 1

2

)P (ν+σ− 1
2
,ν−σ− 1

2)
n (1− y)

(4.22)
for Re(ν) > −1

2 and Re(σ) > 0.
Using the definition of the Jacobi polynomials [7], we have

P
(ν+σ− 1

2
,ν−σ− 1

2)
n (1− y) =

(
ν + σ + 1

2

)
n

n! 2F1

(
−n, n+ 2ν
ν + σ + 1

2

;
y

2

)
. (4.23)

On the left hand side of (4.22), it is convenient to make the change of variable
x2 = z and use the representation (2.2.1) for the Gegenbauer polynomials. After this
preprocessing step, identity (4.22) can be rewritten as

1∫
0

zν−
1
2 (1− z)σ−1

2F1

(
−n, n+ 2ν
ν + 1

2

;
zy

2

)
dz =

Γ
(
ν + 1

2

)
Γ(σ)

Γ
(
ν + σ + 1

2

) 2F1

(
−n, n+ 2ν
ν + σ + 1

2

;
y

2

)
. (4.24)

Next, we represent the 2F1 on the left hand side as a sum of Barnes’ type integrals
(4.10) and identity (4.24) becomes

Γ(n+ 1)
2πiΓ(n+ 2ν)

[∫ δ+i∞

δ−i∞

Γ(s)
Γ(n+ s+ 1)

Γ(n+ 2ν − s)
Γ
(
σ + ν − s+ 1

2

) (y
2

)−s
ds + (−1)n

×
∫ η+i∞

η−i∞

Γ(−n− s)
Γ(1− s)

Γ(n+ 2ν − s)
Γ
(
σ + ν − s+ 1

2

) (y
2

)−s
ds

]

=
1

Γ
(
ν + σ + 1

2

) 2F1

(
−n, n+ 2ν
ν + σ + 1

2

;
y

2

)
, (4.25)

where we also used the closed form of the Beta integral
1∫

0

zν−s−
1
2 (1− z)σ−1dz =: B(ν − s+

1
2
, σ) =

Γ(ν − s+ 1
2)Γ(σ)

Γ(ν − s+ σ + 1
2)
.
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At last, identity (4.25) is equivalent to the Barnes type integral representation of the
2F1 appearing on the right hand side.
As a last example, we prove the more involved identity [32, 7.314.1]

1∫
−1

(1− x)ν−
3
2 (1 + x)ν−

1
2 [Cνn(x)]2 dx =

π1/2Γ
(
ν − 1

2

)
Γ(2ν + n)

n!Γ(ν)Γ(2ν)
. (4.26)

We first make a change of variable 1−x
2 =: y and then use the duplication formula [7,

1.5.1] to write (4.26) as

1∫
0

yν−
3
2 (1− y)ν−

1
2 [Cνn(1− 2y)]2 dy =

Γ
(
ν − 1

2

)
Γ
(
ν + 1

2

)
Γ(2ν + n)

n!Γ(2ν)2
. (4.27)

For the Gegenbauer polynomials we have the representation (2.2.1) with z = 2
and the Barnes’ type integral representation for the terminating 2F1 given by (4.10).
Therefore (4.27) can be rewritten as

Γ
(
ν + 1

2

)2
(2πi)2

∑
i,j∈{1,2}

∫
Ci

∫
Cj

f̃i(s)f̃j(t)
Γ
(
ν − s− t− 1

2

)
Γ(2ν − s− t)

ds dt =
Γ
(
ν − 1

2

)
Γ(2ν + n)
n!

,

(4.28)
where for simplicity of presentation, we introduced the notations

f̃1(s) =
Γ(s)

Γ(n+ s+ 1)
Γ(n+ 2ν − s)
Γ
(
ν + 1

2 − s
) ,

f̃2(s) = (−1)n
Γ(−n− s)
Γ(1− s)

Γ(n+ 2ν − s)
Γ
(
ν + 1

2 − s
)

and the contours of integrations are of the form C1 = (δ − i∞, δ + i∞) and C2 =
(η − i∞, η + i∞).
Since all the integrands on the left hand side of (4.28) are shadows of each other and

will satisfy the same certificate recurrence, we denote a generic integral of the four by

INT [n] =
∫ ∫

F [n, s, t] ds dt. (4.29)

Wegschaider’s algorithm [72] delivers the following certificate recurrence
In[57]:= FindRecurrence [F [n, s, t], n, {s, t} , 1] ;

In[58]:= ShiftRecurrence [%[[1]], {n, 2} , {s, 1} , {t, 1}]

Out[58]= (n+1)(2n+2ν+3)(n+2)2F [n+2, s, t]+(n+1)(n+2ν)2(2n+2ν+1)F [n, s, t]−2(n+1)(n+ν+

1)(2n2+4νn+4n+6ν+3)F [n+1, s, t] = ∆s[2(n+ν+1)(4νn2−4sn2−6tn2−4n2+4ν2n−4νn−
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4 Recurrences for Mellin-Barnes integrals

4νsn−4sn−8νtn−2stn−8tn−7n−4ν2−8ν−4νt−4st−2t−3)F [n+1, s, t]−2(n+1)(n+ν+

1)(4n+6ν+3)(2ν−2s−2t−3)F [n+1, s, t+1]+4(n+2)(n+ν+1)(n+s+2)(t+1)F [n+2, s, t]]+

∆t[4(n+ν+1)(2n3 +6νn2−sn2 +8n2 +4ν2n+18νn−2νsn−3sn+stn−tn+10n+8ν2 +12ν−
4νs−2s−2νt+2st− t+4)F [n+1, s, t]−4(n+2)(n+ν+1)(2n+s+3)(n+ t+2)F [n+2, s, t]].

By integrating over this certificate recurrence, we obtain a recurrence for the sum
of integrals from (4.28). This homogeneous recurrence is the output of the following
command

In[59]:= rec2 = SumCertificate [%] /.SUM→ INT

Out[59]= (2n+2ν+3)(n+2)2INT[n+2]+(n+2ν)2(2n+2ν+1)INT[n]−2(n+ν+1)
`
2n2 + 4νn+ 4n+ 6ν + 3

´
INT[n+ 1] = 0.

and it is also satisfied by the right hand side of (4.28)

In[60]:= RHS [ν_, n_] :=
Γ
`
ν − 1

2

´
Γ(2ν + n)

n!

In[61]:= CheckRecurrence [rec2, RHS[n, ν]]

Out[61]= True.

At last, we only need consider two initial values. In the case n = 0, we have
Cν0 (x) = 1 and (4.26) is equivalent to the duplication formula. For n = 1, we have
Cν1 (x) = 2νx and the calculations are again trivial.

4.4 Recurrences for a class of Ising integrals

In [9], it was asked whether an already conjectured recurrence for the member C5,k of
the Ising-class integrals

Cn,k :=
1
n!

∫ ∞
0

. . .

∫ ∞
0

dx1dx2 . . . dxn

(coshx1 + · · ·+ coshxn)k+1
(4.30)

could be proven with WZ summation methods, after transforming it to a two-fold
nested Barnes integral. As described in [9, Section 7], this idea goes back to W.
Zudilin. We have obtained the conjectured recurrences in k ≥ 1 for the integrals
C5,k and C6,k using WZ-summation [76] and the approach to compute recurrences for
multiple nested Barnes’ type integrals presented in Section 4.2. Moreover, we will
show that using this method one can in principle obtain recurrences with respect to
k ≥ 1 for any integral of the form (4.30) with n ∈ N.
Note that, in [18], J. M. Borwein and B. Salvy show the existence of linear recur-

rences with polynomial coefficients for the integrals (4.30) using the theory of D-finite
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4.4 Recurrences for a class of Ising integrals

series and a Bessel-kernel representation given in [10]. They also describe a very ef-
ficient algorithm to compute recurrences in k ≥ 1 for the integrals Cn,k for given
n ∈ N.

4.4.1 Mellin-Barnes integral representations

For the statement of the problem we invoke the renormalization

cn,k :=
n!
2n

Γ (k + 1)Cn,k

used in [9]. The idea of W. Zudilin presented in [9, Section 7] relies on the following
analytic convolution theorem.

Theorem 4.3. ( [9], Theorem 7) For k ∈ C with Re(k) > 0 and n, q ∈ N such that
n ≥ 1 and 1 ≤ q ≤ n− 1, we have

cn,k =
1

2πi

∫
C
cn−q,k+scq,−1−sds

where the contour C runs over the vertical line (−λ− i∞,−λ+ i∞) with λ ∈ R such
that −1−Re(k) < −λ < −1.

Also in [9] the closed forms

C1,k =
2kΓ

(
k+1

2

)2
Γ (k + 1)

(4.31)

and

C2,k =
√
πΓ
(
k+1

2

)3
2Γ
(
k
2 + 1

)
Γ (k + 1)

(4.32)

were computed. In the following sections, we will compute the homogeneous recur-
rences satisfied by C3,k and C6,k for k ≥ 1. By applying Theorem 4.3, using the closed
forms (4.31) and (4.32), and making substitutions (s, t) → (2s, 2t), we are able to
rewrite these as the Barnes’ type integrals

C3,k =
1

12i
√
πΓ(k + 1)

∫
Cs

Γ
(
k+1

2 + s
)3

Γ(−s)2

Γ
(
k
2 + s+ 1

)
4s

ds (4.33)

and, respectively,

C6,k =
−1

720
√
πΓ (k + 1)

∫
Cs

∫
Ct

Γ
(
k+1

2 + s
)3

Γ (t− s)3 Γ (−t)3

Γ
(
k
2 + s+ 1

)
Γ
(
t− s+ 1

2

)
Γ
(
−t+ 1

2

)dsdt. (4.34)
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The vertical contours Cs := (−λ− i∞,−λ+ i∞) separate the poles of Γ
(
k+1

2 + s
)

from the poles of Γ (−s) and, respectively, from those of Γ (t− s). Similarly, Ct :=
(−ρ− i∞,−ρ+ i∞) splits the descending set of poles coming from Γ (t− s) from the
ascending poles of Γ (−t). For reasons that become clear in Section 4.4.2, we choose
λ, ρ ∈ R such that the following conditions are satisfied:

−1 +Re(k)
2

< −λ < −ρ < −1. (4.35)

Successively applying Theorem 4.3, we prove the following integral representation:

Theorem 4.4. For arbitrary integers n, k ≥ 1, we have

Cn,k =
2n

n! (2πi)q
1

Γ (k + 1)

∫
Ct1

. . .

∫
Ctq

c2,k+t1

q−1∏
j=1

c2,−1−tj+tj+1

 cε,−1−tqdt1 . . . dtq,

(4.36)
where q :=

⌈
n
2

⌉
− 1 and ε := n− 2q.

We use the closed forms (4.31) and (4.32), and the substitutions tj → 2tj for all
1 ≤ j ≤ q, to obtain from (4.36) the final representation of Cn,k for arbitrary k, n ≥
1. At last, we choose new integration contours Ctj := (−λj − i∞,−λj + i∞) for all
1 ≤ j ≤ q which run over vertical lines separating the poles of gamma functions of the
form Γ (a+ tj) from the poles of gamma functions of the form Γ (b− tj). For reasons
presented later, we choose these Barnes paths of integration such that the following
conditions are satisfied:

−1 +Re(k)
2

< −λ1 < −λ2 < · · · < −λq < −1. (4.37)

4.4.2 Recurrences for the integrals Cn,k

After distinguishing between odd and even values of the parameter k, for an arbitrary
Ising-class integral Cn,k, n, k ≥ 1, one obtains two representations of the form

Cn,µ =
2n+2q

n! (2πi)q
1

Γ (µ+ 1)

∫
Ct1

. . .

∫
Ctq

Ψ (µ, t1, . . . , tq) dt1 . . . dtq, (4.38)

where µ = k
2 , respectively, µ = k−1

2 such that µ ∈ N. In both cases the integrand
Ψ (µ, t) is proper hypergeometric in µ ≥ 0 and in all integration variables tj from
t = (t1, . . . , tq).
Therefore, Wegschaider’s algorithm [72] can be applied to deliver a certificate recur-

rence of the form (2.4), that can always be rewritten as

∑
m∈S

am (µ) Ψ(µ+m, t) =
r∑
j=1

∆tj

 ∑
(m,τ)∈Sj

bm,τ (µ, t) Ψ(µ+m, t + τ)

 , (4.39)
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4.4 Recurrences for a class of Ising integrals

where S is a pre-computed structure set, where bm,τ (µ, t) and the coefficients am (µ)
are polynomials, the latter free of the integration variables and not all zero. Next
we discuss when the recurrence relation, obtained after integrating over the certificate
(4.39), is homogeneous.

Proposition 1. If the integration contours Ctj := (−λj − i∞,−λj + i∞) satisfy the
conditions (4.37) and the sets of shifts Sj are of the form

Sj =
{

(m, τ) ∈ Zq+1 : m ≥ 0, τj < τj+1 and τi = 0 for 1 ≤ i < j
}
,

for 1 ≤ j < q and

Sq =
{

(m, τ) ∈ Zq+1 : m ≥ 0 and τi = 0 for 1 ≤ i ≤ q
}
,

then we have ∫
Ctj

∆tj

 ∑
(m,τ)∈Sj

bm,τ (µ, t) Ψ(µ+m, t + τ)

 dtj = 0, (4.40)

for all 1 ≤ j ≤ q and µ ≥ 1.

Proof: Given the iterative construction of the integral representation (4.36), com-
puted in Section 4.4.1, it suffices to study the behavior of the following two integrals

I1 :=
∫
C1

∆t

(
Γ (t− r)3

Γ
(
t− r + 1

2

) Γ (−t)2

4t

)
dt, (4.41)

I2 :=
∫
C2

∆t

(
Γ (t− r)3

Γ
(
t− r + 1

2

) Γ (s+ 1− t)3

Γ
(
s− t+ 3

2

) ) dt, (4.42)

where r, s ∈ C are given constants.
We will prove here that both integrals

Il =
∫
Cl

∆t (Fl(t)) dt, l ∈ {1, 2}

are zero if the contours of integration Cl are the vertical lines (−ρl − i∞,−ρl + i∞) sep-
arating the increasing from the decreasing sequences of poles of the gamma functions
appearing in the numerators of the integrands Fl(t). The Barnes paths of integration
Cl also fulfill the conditions (4.37); i.e., Re(r) < −ρl < Re(s) < −1 for l ∈ {1, 2}.
Using the transformation t+ 1→ t we can write the integrals (4.41) and (4.42) as

Il =
∫
C′l
Fl (t) dt−

∫
Cl
Fl (t) dt, l ∈ {1, 2}
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4 Recurrences for Mellin-Barnes integrals

where the shifted contours C′l run vertically on the line (1− ρl − i∞, 1− ρl + i∞).
Next we define integrals of the form (4.14),

INl :=

1−ρl+iN∫
1−ρl−iN

Fl (t) dt+

−ρl+iN∫
1−ρl+iN

Fl (t) dt+

−ρl−iN∫
−ρl+iN

Fl (t) dt+

1−ρl−iN∫
−ρl−iN

Fl (t) dt,

for N > 0 an arbitrary integer and l ∈ {1, 2}.
Since conditions (4.37) are fulfilled, there are no poles of the functions Fl (t) within

these closed rectangular contours of integration. Therefore INl are zero for any integer
N ∈ N. It only remains to show that INl → Il as N → ∞ for l ∈ {1, 2}. For this we
need to prove that the integrals

JNl :=

−ρl+iN∫
1−ρl+iN

Fl (t) dt and LNl :=

1−ρl−iN∫
−ρl−iN

Fl (t) dt

tend to zero as N →∞. Using (4.8) one obtains when |t| → ∞ and |arg(t)| < π,

Fl (t) = O
(
eIm(t)[arg(−t)−arg(t)]

)
, l ∈ {1, 2} .

Here we distinguish two cases, either Im(t) > 0 or Im(t) < 0, and in any of these cases
the functions Fl (t) fulfill the condition (4.15) which assures that the integrals JNl and
LNl tend to zero as N →∞ for l ∈ {1, 2}.
Remark: The conditions of our proposition are very restrictive; especially the condi-

tion imposed on the set of shifts appearing inside the last delta part ∆tq rarely occurs
in practice. For example, for the integral C3,k in the case k = 2K we use the integral
form (4.33) and the following commands, from the package MultiSum, to compute a
certificate recurrence and shift it accordingly

In[62]:= F [k_, s_] :=
Γ
ˆ
k+1
2

+ s
˜3

Γ[−s]2

12i
√
πΓ[k + 1]Γ

ˆ
k
2

+ s+ 1
˜
4s

;

In[63]:= FindRecurrence [F [2K, s],K, s, 1] ;

In[64]:= ShiftRecurrence [%[[1]], {K, 2}, {s, 2}]

Out[64]= −(2K+1)3F [K, s]+4(K+1)(20K2 +40K+21)F [K+1, s]−36(K+1)(K+2)(2K+3)F [K+

2, s] = ∆s[(2K + 1)3F [K, s] + (2K + 1)3F [K, s+ 1]− 4(K + 1)(20K2 + 40K + 21)F [K + 1, s]−
16(K + 1)(2K2 − 4sK −K − 5s− 4)F [K + 1, s+ 1] + 48(K + 1)(K + 2)(2K + 3)F [K + 2, s]].

Note that in this case one can also compute a certificate recurrence using the more
efficient algorithm [78]. After integrating both sides of this certificate recurrence with
respect to the variable s, we can apply Proposition 1 only to some of the terms appear-
ing inside the delta part. At last, on the remaning terms, Cauchy’s residue theorem
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4.4 Recurrences for a class of Ising integrals

and the asymptotic property (4.15) will be used to evaluate the left-over contour inte-
grals occuring on the right hand side of the recurrence. In this way, after computing
the following two Mellin-Barnes integrals∫

Cs
∆s[(2K + 1)3F [K, s+ 1]− 16(K + 1)(2K2 − 4sK −K − 5s− 4)

F [K + 1, s+ 1]]ds = (2K + 1)32πi Res
s=−1

F [K, s+ 1]−

16(K + 1)(2K2 + 3K + 1)2πi Res
s=−1

F [K + 1, s+ 1],

the final recurrence satisfied by C3,2K turns out to be homogeneous. In more general
situations, the necessary residue computations tend to be involved but packages such as
Sigma [61] and HarmonicSums [1] can algorithmically simplify the resulting expressions.

4.4.3 The Recurrence for the integral C6,k

In [9], the following recurrence for the integral C6,k was conjectured

− (k + 1)6C6,k + 8(k + 2)2(7k4 + 56k3 + 182k2 + 280k + 171)

C6,k+2 − 16(k + 2)(k + 3)2(k + 4)(49k2 + 294k + 500)C6,k+4

+ 2304(k + 2)(k + 3)(k + 4)2(k + 5)(k + 6)C6,k+6 = 0. (4.43)

To prove that the integral (4.30) for n = 6 satisfies the above recurrence, we use the
representation (4.34). First, we input in Mathematica its integrand as a function of
k ≥ 0 and complex variables s and t

In[65]:= F [k_, s_, t_] :=
−
`
Γ
ˆ
k+1
2

+ s
˜
Γ[t− s]Γ[−t]

´3
720
√
πΓ[k + 1]Γ

ˆ
k
2

+ s+ 1
˜
Γ
ˆ
t− s+ 1

2

˜
Γ
ˆ
−t+ 1

2

˜ .
In the first part of the proof we want to apply Wegschaider’s algorithm [72] which

was already introduced in Section , to obtain a certificate recurrence for F [k, s, t]. For
this we need the function to be proper hypergeometric not only with respect to the
integration variables s, t but also with respect to the additional parameter k. This
leads to a case distinction between even and odd values of k. In each of the two cases,
C6,k can be expressed as a double Barnes type integral over a proper hypergeometric
term

C6,2K+ε =
−1

720π

∫
Cs

∫
Ct
F(K, s, t)dsdt,

with K ≥ 0, ε ∈ {0, 1} and integration contours satisfying the condition (4.35).
As already pointed out, one can reduce the running time of the summation algorithm

[72] by first making an Ansatz for a small structure set of the recurrence. For example,
before computing a recurrence relation for F [2K, s, t], we find a structure set with the
command

75



4 Recurrences for Mellin-Barnes integrals

In[66]:= FindStructureSet [F [2K, s, t],K, {s, t} , {2, 2} , 1]

which gives us two candidates. Using the first candidate we already succeed in finding
a certificate recurrence which can be shifted accordingly to obtain a relation of the
form (4.39), i.e.,

In[67]:= FindRecurrence [F [2K, s, t],K, {s, t} ,%[[1]], 1,WZ→ True] ;

In[68]:= rec = ShiftRecurrence [%[[1]], {K, 3} , {s, 2} , {t, 1}] .

The sets of shifts appearing inside the delta parts, ∆s and ∆t can be inspected by
using the simple Mathematica commands

In[69]:= Cases [rec[[2, 1]], F [__], Infinity]

Out[69]= {F [K, s, 1 + t], F [K, 1 + s, 1 + t], F [K, 2 + s, 1 + t], F [1 +K, s, t], F [1 +K, s, 1 + t], F [1 +K, 1 +

s, t], F [1 + K, 1 + s, 1 + t], F [1 + K, 2 + s, 1 + t], F [2 + K, s, t], F [2 + K, s, 1 + t], F [2 + K, 1 +

s, t], F [2 + K, 1 + s, 1 + t], F [2 + K, 2 + s, 1 + t], F [3 + K, s, t], F [3 + K, s, 1 + t], F [3 + K, 1 +

s, t], F [3 +K, 1 + s, 1 + t]}

In[70]:= Cases [rec[[2, 2]], F [__], Infinity]

Out[70]= {F [K, s, t], F [1 +K, s, t], F [2 +K, s, t], F [3 +K, s, t]}.

When integrating with respect to the variables s and t over this certificate recurrence,
the conditions of Proposition 1 are fullfilled by the set of shifts appearing in the ∆t-
part and by a subset of the set shifts contained in ∆s. At last, we evaluate the
remaining contour integrals and again we obtain a homogeneous recurrence satisfied
by INT[K] := C6,2K . This is returned by the command

In[71]:= SumCertificate [rec] /.SUM→ INT

Out[71]= (1 + 2K)6INT[K]− 32(1 +K)2(171 + 560K + 728K2 + 448K3 + 112K4)INT[1 +K] + 256(1 +

K)(2 + K)(3 + 2K)2(125 + 147K + 49K2)INT[2 + K] − 36864(1 + K)(2 + K)2(3 + K)(3 +

2K)(5 + 2K)INT[3 +K] = 0.

Similarly, in the case k = 2K + 1 and K ≥ 0 the computed recurrence is

Out[71]= (1+K)6INT[K]−(3+2K)2(87+210K+196K2+84K3+14K4)INT[1+K]+(2+K)2(3+2K)(5+

2K)(843+784K+196K2)INT[2+K]−144(2+K)(3+K)(3+2K)(5+2K)2(7+2K)INT[3+K] =

0,

where INT[K] now denotes C6,2K+1.
The last step of the proof consists of obtaining the recurrence for the sequence of

integrals C6,k with k ≥ 0. To this end, we utilize the fact that the sequences C6,2K

and C6,2K+1 defined for all K ≥ 0 are P-recursive (also called holonomic [68,79]); i.e.,
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4.4 Recurrences for a class of Ising integrals

they satisfy linear recurrences with polynomial coefficients. To compute the desired
recurrence, we load, for instance, the Mathematica package

In[72]:= << GeneratingFunctions.m

GeneratingFunctions Package by Christian Mallinger – c© RISC Linz – V 0.68
(07/17/03)

From this package, the command REInterlace computes a recurrence that is satis-
fied by the sequence obtained by interlacing the input recurrences (see [41] for more
details). This means, we input the recurrence relations satisfied by (C6,2K)K≥0 and
(C6,2K+1)K≥0, respectively, and obtain a polynomial recurrence for the sequence C6,k

with k ≥ 0. The computed recurrence is exactly (4.43) and herewith the proof is
complete.

Summary

In this chapter we introduced an algorithmic approach to prove and compute recur-
rences for Mellin-Barnes integrals by using WZ-Fasenmyer summation techniques, as
we show in [65], and used this technique in combination with the Mellin transform
method.
In analogy with the summation case, we prove entries from [32] by first using the

Mellin transform method to bring the integrals to a suitable input form and then algo-
rithmically finding a recurrence satisfied by both sides of the identity. We demonstrate
that the idea can be successfully used to enlarge the domain of applicability for this
classic integral transform.
This algorithmic method was also used to determine recurrences for members of

the Ising-class integrals. Wegschaider’s algorithm [72] delivers the recurrence conjec-
tured in [9] for C5,k in completely analogous manner. Neglecting practical issues like
computation time, this method applies to all n ≥ 1.
Though, we need to remark that the algorithm [72] determines recurrences, after

making an Ansatz about their structure set (i.e., fixing the set of shifts that they
contain), by solving a large system of equations over a field of rational functions.
Therefore, if the input of the algorithm is too involved, computations might become
time consuming.
Basic ingredients of the approach are the representation of the Ising integrals Cn,k

for k, n ≥ 1 as nested Barnes’ type integrals and the convolution theorem stated in
Section 7 of [9], ideas going back W. Zudilin. In addition, the method presented in
Section 4.2 has a wider range of applications that deserve to be explored further.
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My Mathematica package FSums

We present the main functions from the Mathematica package FSums, described and
used in Chapter 3 which relies on several procedures from the packages MultiSum [72],
Sigma [61], HarmonicNumbers [1], zb [51] and the new EvaluateMultiSums package by
C. Schneider.

ComputeFSum [ fIn_ , N_, rangeIn_List , lb_ , {ep_ , s tar t_Integer ,
end_Integer } , opt___Rule ]

To call this procedure one needs to load all the packages mentioned above.
We take as input a summation problem of the form (3.2) which depends on
the Mellin moment N ≥ lb and on the dimension regularization parameter
ε > 0. As output we obtain the εstart till the εend coefficients of the Laurent
series expansion for

∑
rangeIn fIn. The options for this function, as described

in Section 3.5 are Printing, Splitting, SigmaLevel, Reorder. In the case
when the Splitting option is set to be nonzero, the summation variables
of the split sums will be added to a list in the second parameter, the Mellin
moment becoming the first element of this list. See also Algorithm 6.

UseZb [ fIn_ , range_List , N_]

is used in ComputeFSum to call Zeilberger’s algorithm as implemented in the
Mathematica package zb.m. After computing a recurrence for the single
sum

∑
range fIn with the Zb procedure, we set it up in the form needed for

further computations.

UseMultiSum [ fIn_ , N_, l istSumVars_List ]

calls the functions FindStructureSet and FindRecurrence from the pack-
age MultiSum to determine a certificate recurrence. Afterwards we shift
this recurrence to contain only positive shifts in all summation variables
from listSumVars and in the free parameter N.

Reorder [ range_List ]

As described in Section 3.5, this function is used when the Reorder option
is set to True in the ComputeFSum procedure. It determines a new order of
the summation variables which will be used in the UseMultiSum procedure.
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Arrange [ rec_ , range_ ]

used when the Reorder option is set to True in the ComputeFSum proce-
dure. After calling the UseMultiSum procedure with a rearranged order of
variables, the Arrange function restores the order in the computed recur-
rence.

Sh i f tToPos i t i v e [ rec_ , N_, varL i s t_Li s t ]

is called inside the UseMultiSum function. It determines by how much we
need to shift the computed certificate recurrence such that it contains only
positive shifts and afterwards calls the ShiftRecurrence procedure from
the package MultiSum to achieve this goal.

SoreSpots [ fIn_ , finRange_List , d_Integer , N_, inf inRange_List ]

implements Algorithm 1 to compute the sore spots of a sum with summand
fIn and range infinRange × finRange after adjusting with grade d > 0.

CompensatingSums [ fIn_ , range_List , sh i f t_Int ege r , N_]

using Algorithm 2 computes the compensating sums after shifting with
shift in the parameter N.

InhomogenRec [ rec_ , N_, range_List , CoeffSplitBound_ ]

As described in Section 3.3, given a certificate recurrence returned by the
UseMultiSum function we determine the sums appearing on the right hand
side after summing over range assuming nonstandard summation bounds.
The option CoeffSplitBound can be used to split the sums appearing in
the inhomogeneous part for large polynomial coefficients in the ∆-parts.

SubstituteSummandInRec [ rec_ , fIn_ ,N_, l istSumVars_List ]

substitutes the summand fIn as F [N, listSumVars] in the inhomoge-
neous part of the recurrence returned by the InhomogenRec function.

Trivia lSums [ fIn_ , rangeIn_List ]

sets to zero sums which contain ranges of the form [q . . . B] with q > B.

Test ingFct ion [ fIn_ , range_List , N_List , lb_List , {ep_ , start_ ,
end_} , sp l i tPo in t s_L i s t , opt___Rule ]

This procedure is used for testing, by calling the ComputeFSum procedure
with different Splitting options given in the list splitPoints.
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N = {0, 1, 2, . . .} - The set of natural numbers
Z,Q,R - Sets of integers, rational, real numbers
R[k]〈K〉 - Ring of difference operators with

Kk = (k + 1)K
(a)n - Pochhammer symbol or rising factorial,

(a)n = a(a+ 1) · . . . · (a+ n− 1)

pFq
( a1 . . . ap
b1 . . . bq

; z
)

- The generalized hypergeometric function,

pFq
( a1 . . . ap
b1 . . . bq

; z
)

=
∑

n≥0
(a1)n·...·(ap)n
(b1)n·...·(bq)n

zn

n!

Hn - Harmonic number, Hn =
∑n

j=1
1
j

Sa1,...,ak(n) - Multiple harmonic sum∑n
i1=1

∑i1
i2=1 · · ·

∑ik−1

ik=1
sign(a1)i1

i
|a1|
1

· · · sign(ak)ik

i
|ak|
k

P
(α,β)
n (x), Pn(x), Cλn(x) - The families of Jacobi, Legendre and Gegenbauer

polynomials, respectively
∆n - The forward difference operator in n
|i| - Norm of a multi-index tuple∑n

l=1 il for i = (i1, . . . , in)
[a . . . b] - integer range { i ∈ Z | a ≤ i ≤ b } for a, b ∈ Z

[a1 . . . b1]× [a2 . . . b2]× · · · × [an . . . bn] for a, b ∈ Zn

[0 . . . a]i n [0 . . . i] - range for the sum
∑a

i=0

∑i
j=0

ΦN,j(P ′) - max
(u,v,w)∈SP

ϕN,j(N uSvJw)

for P ′ in R[N, σ, j, ε]〈N , S, J〉
ϕN,j - grading function on monomials of the operator ring

R[N, σ, j, ε]〈N , S, J〉, ϕN,j : N uSvJw 7→ |w| − u
DF - Set of well-defined values of F
SuppF (µ, α) - Support of F
SummF (τ, δ) - Summation range of F
Cn,k - Ising integral

1
n!

∫∞
0 . . .

∫∞
0

dx1dx2...dxn
(coshx1+···+coshxn)k+1
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